Suppr超能文献

利用荧光激发扫描的高光谱成像技术检测结直肠癌

Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning.

作者信息

Leavesley Silas J, Deal Joshua, Hill Shante, Martin Will A, Lall Malvika, Lopez Carmen, Rider Paul F, Rich Thomas C, Boudreaux Carole W

机构信息

Department of Chemical and Biomolecular Engineering, University of South Alabama.

Department of Pharmacology, University of South Alabama.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10489. doi: 10.1117/12.2290696. Epub 2018 Feb 19.

Abstract

Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices - likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data, but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.

摘要

高光谱成像技术在生物医学应用方面展现出了巨大潜力。这些技术对于检测分子事件以及表征细胞、组织和生物材料的组成特别有用。不幸的是,高光谱成像技术在转化为临床设备方面进展缓慢,这可能是由于该技术成本增加、复杂性提高,以及采集光谱图像通常需要较长的采集时间。我们已经证明,与传统的发射扫描方法相比,扫描荧光激发光谱的高光谱成像方法能够提供更高的信号强度和更快的成像速度。我们还证明,激发扫描方法或许能够检测冷冻组织中结肠腺瘤、腺癌和正常黏膜之间的光谱差异。在此,我们报告使用激发扫描高光谱成像技术筛选新鲜肿瘤和非肿瘤结直肠组织对的可行性结果。使用一种新型高光谱成像荧光激发扫描显微镜对组织进行成像,采样波长范围为360 - 550 nm,以5 nm为增量。对图像数据进行校正以实现可溯源至美国国家标准与技术研究院(NIST)的平坦光谱响应。然后在ENVI软件(Harris Geospatial Solutions)中使用一系列监督和非监督分类方法对图像数据进行分析。监督分类对于单患者图像数据的准确率>99%,但对于多患者分类(截至目前n = 9)的准确率仅为64%,准确率下降是由于假阳性检测率增加所致。因此,初步数据表明该方法可能是一种可行的检测方法,但需要评估更大的患者样本量,并研究患者间变异性的影响。

相似文献

1
Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning.
Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10489. doi: 10.1117/12.2290696. Epub 2018 Feb 19.
2
Hyperspectral Imaging Fluorescence Excitation Scanning for Detecting Colorectal Cancer: Pilot Study.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9703. doi: 10.1117/12.2213153. Epub 2016 Mar 7.
3
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection.
J Biomed Opt. 2016 Oct 1;21(10):104003. doi: 10.1117/1.JBO.21.10.104003.
4
Hyperspectral imaging fluorescence excitation scanning (HIFEX) microscopy for live cell imaging.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10883. doi: 10.1117/12.2510562. Epub 2019 Feb 21.
6
An excitation wavelength-scanning spectral imaging system for preclinical imaging.
Rev Sci Instrum. 2008 Feb;79(2 Pt 1):023707. doi: 10.1063/1.2885043.
7
Label-free spectroscopic tissue characterization using fluorescence excitation-scanning spectral imaging.
J Biophotonics. 2020 Feb;13(2):e201900183. doi: 10.1002/jbio.201900183. Epub 2019 Oct 15.
8
Excitation-Scanning Hyperspectral Imaging as a Means to Discriminate Various Tissues Types.
Proc SPIE Int Soc Opt Eng. 2017 Jan-Feb;10068. doi: 10.1117/12.2251682. Epub 2017 Feb 16.
9
Optimizing channel selection for excitation-scanning hyperspectral imaging.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10881. doi: 10.1117/12.2510784. Epub 2019 Mar 4.
10
Spectral Illumination System Utilizing Spherical Reflection Optics.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11243. doi: 10.1117/12.2546395. Epub 2020 Feb 17.

引用本文的文献

2
Colon Disease Diagnosis with Convolutional Neural Network and Grasshopper Optimization Algorithm.
Diagnostics (Basel). 2023 May 12;13(10):1728. doi: 10.3390/diagnostics13101728.
3
Multifaceted mirror array illuminator for fluorescence excitation-scanning spectral imaging microscopy.
J Biomed Opt. 2023 Feb;28(2):026502. doi: 10.1117/1.JBO.28.2.026502. Epub 2023 Feb 7.
5
Optimizing channel selection for excitation-scanning hyperspectral imaging.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10881. doi: 10.1117/12.2510784. Epub 2019 Mar 4.
6
Optimization of Light Transmission through an Excitation-scan Hyperspectral Mirror Array System.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10881. doi: 10.1117/12.2510555. Epub 2019 Mar 4.

本文引用的文献

1
Hyperspectral Imaging Fluorescence Excitation Scanning for Detecting Colorectal Cancer: Pilot Study.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9703. doi: 10.1117/12.2213153. Epub 2016 Mar 7.
2
Tunable thin-film optical filters for hyperspectral microscopy.
Proc SPIE Int Soc Opt Eng. 2013 Feb;8589. doi: 10.1117/12.2002469. Epub 2013 Feb 22.
3
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection.
J Biomed Opt. 2016 Oct 1;21(10):104003. doi: 10.1117/1.JBO.21.10.104003.
4
Excitation-scanning hyperspectral imaging microscope.
J Biomed Opt. 2014 Apr;19(4):046010. doi: 10.1117/1.JBO.19.4.046010.
5
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
6
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
J Biomed Opt. 2013 Oct;18(10):100901. doi: 10.1117/1.JBO.18.10.100901.
7
Thin-film tunable filters for hyperspectral fluorescence microscopy.
J Biomed Opt. 2014 Jan;19(1):011017. doi: 10.1117/1.JBO.19.1.011017.
8
Assessing FRET using spectral techniques.
Cytometry A. 2013 Oct;83(10):898-912. doi: 10.1002/cyto.a.22340. Epub 2013 Aug 8.
9
An approach for characterizing and comparing hyperspectral microscopy systems.
Sensors (Basel). 2013 Jul 19;13(7):9267-93. doi: 10.3390/s130709267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验