Suppr超能文献

一种用于预测物理治疗后长期疼痛强度降低的风险评估工具的推导

Derivation of a Risk Assessment Tool for Prediction of Long-Term Pain Intensity Reduction After Physical Therapy.

作者信息

Horn Maggie E, George Steven Z, Li Cai, Luo Sheng, Lentz Trevor A

机构信息

Duke University, Department of Orthopaedic Surgery, Durham, NC, 27701, USA.

Duke University, Department of Orthopaedic Surgery and Duke Clinical Research Institute, Durham, NC, 27701, USA.

出版信息

J Pain Res. 2021 May 28;14:1515-1524. doi: 10.2147/JPR.S305973. eCollection 2021.

Abstract

RATIONALE

Risk assessment tools can improve clinical decision-making for individuals with musculoskeletal pain, but do not currently exist for predicting reduction of pain intensity as an outcome from physical therapy.

AIMS AND OBJECTIVE

The objective of this study was to develop a tool that predicts failure to achieve a 50% pain intensity reduction by 1) determining the appropriate statistical model to inform the tool and 2) select the model that considers the tradeoff between clinical feasibility and statistical accuracy.

METHODS

This was a retrospective, secondary data analysis of the Optimal Screening for Prediction of Referral and Outcome (OSPRO) cohort. Two hundred and seventy-nine individuals seeking physical therapy for neck, shoulder, back, or knee pain who completed 12-month follow-up were included. Two modeling approaches were taken: a longitudinal model included demographics, presence of previous episodes of pain, and regions of pain in addition to baseline and change in OSPRO Yellow Flag scores to 12 months; two comparison models included the same predictors but assessed only baseline and early change (4 weeks) scores. The primary outcome was failure to achieve a 50% reduction in pain intensity score at 12 months. We compared the area under the curve (AUC) to assess the performance of each candidate model and to determine which to inform the Personalized Pain Prediction (P3) risk assessment tool.

RESULTS

The baseline only and early change models demonstrated lower accuracy (AUC=0.68 and 0.71, respectively) than the longitudinal model (0.79) but were within an acceptable predictive range. Therefore, both baseline and early change models were used to inform the P3 risk assessment tool.

CONCLUSION

The P3 tool provides physical therapists with a data-driven approach to identify patients who may be at risk for not achieving improvements in pain intensity following physical therapy.

摘要

理论依据

风险评估工具可改善肌肉骨骼疼痛患者的临床决策,但目前尚无用于预测物理治疗后疼痛强度降低这一结果的工具。

目的

本研究的目的是开发一种工具,通过以下方式预测未能实现疼痛强度降低50%的情况:1)确定为该工具提供信息的合适统计模型;2)选择考虑临床可行性和统计准确性之间权衡的模型。

方法

这是一项对转诊和结果预测的最佳筛查(OSPRO)队列进行的回顾性二次数据分析。纳入了279名因颈部、肩部、背部或膝盖疼痛寻求物理治疗并完成12个月随访的个体。采用了两种建模方法:纵向模型除了包括人口统计学特征、既往疼痛发作情况和疼痛部位外,还包括基线以及OSPRO黄旗评分至12个月的变化;两个比较模型包括相同的预测因素,但仅评估基线和早期变化(4周)评分。主要结局是在12个月时未能实现疼痛强度评分降低50%。我们比较了曲线下面积(AUC)以评估每个候选模型的性能,并确定为个性化疼痛预测(P3)风险评估工具提供信息的模型。

结果

仅基线模型和早期变化模型的准确性(AUC分别为0.68和0.71)低于纵向模型(0.79),但在可接受的预测范围内。因此,基线模型和早期变化模型均用于为P3风险评估工具提供信息。

结论

P3工具为物理治疗师提供了一种数据驱动的方法,以识别物理治疗后疼痛强度可能无法改善的风险患者。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验