Krause Simon, Evans Jack D, Bon Volodymyr, Senkovska Irena, Ehrling Sebastian, Iacomi Paul, Többens Daniel M, Wallacher Dirk, Weiss Manfred S, Zheng Bin, Yot Pascal G, Maurin Guillaume, Llewellyn Philip L, Coudert François-Xavier, Kaskel Stefan
Faculty of Chemistry and Food Chemistry, TU Dresden Bergstrasse 66 01069 Dresden Germany
Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
Chem Sci. 2020 Aug 24;11(35):9468-9479. doi: 10.1039/d0sc03727c.
Framework materials at the molecular level, such as metal-organic frameworks (MOF), were recently found to exhibit exotic and counterintuitive micromechanical properties. Stimulated by host-guest interactions, these so-called soft porous crystals can display counterintuitive adsorption phenomena such as negative gas adsorption (NGA). NGA materials are bistable frameworks where the occurrence of a metastable overloaded state leads to pressure amplification upon a sudden framework contraction. How can we control activation barriers and energetics functionalization of the molecular building blocks that dictate the frameworks' mechanical response? In this work we tune the elastic and inelastic properties of building blocks at the molecular level and analyze the mechanical response of the resulting frameworks. From a set of 11 frameworks, we demonstrate that widening of the backbone increases stiffness, while elongation of the building blocks results in a decrease in critical yield stress of buckling. We further functionalize the backbone by incorporation of sp hybridized carbon atoms to soften the molecular building blocks, or stiffen them with sp and sp carbons. Computational modeling shows how these modifications of the building blocks tune the activation barriers within the energy landscape of the guest-free bistable frameworks. Only frameworks with free energy barriers in the range of 800 to 1100 kJ mol per unit cell, and moderate yield stress of 0.6 to 1.2 nN for single ligand buckling, exhibit adsorption-induced contraction and negative gas adsorption. Advanced experimental methodologies give detailed insights into the structural transitions and the adsorption behavior. The new framework DUT-160 shows the highest magnitude of NGA ever observed for nitrogen adsorption at 77 K. Our computational and experimental analysis of the energetics and mechanical response functions of porous frameworks is an important step towards tuning activation barriers in dynamic framework materials and provides critical design principles for molecular building blocks leading to pressure amplifying materials.
最近发现,分子水平的框架材料,如金属有机框架(MOF),具有奇异且违反直觉的微观力学性能。受主客体相互作用的刺激,这些所谓的软多孔晶体可表现出违反直觉的吸附现象,如负气体吸附(NGA)。NGA材料是双稳态框架,其中亚稳态过载状态的出现会导致框架突然收缩时压力放大。我们如何控制决定框架机械响应的分子构建块的活化能垒和能量功能化?在这项工作中,我们在分子水平上调节构建块的弹性和非弹性性能,并分析所得框架的机械响应。从一组11个框架中,我们证明主链变宽会增加刚度,而构建块伸长会导致屈曲临界屈服应力降低。我们通过引入sp杂化碳原子进一步对主链进行功能化,以使分子构建块变软,或用sp和sp碳使其变硬。计算模型展示了这些构建块的修饰如何在无客体双稳态框架的能量景观中调节活化能垒。只有单位晶胞自由能垒在800至1100 kJ/mol范围内,且单配体屈曲的屈服应力适中,为0.6至1.2 nN的框架,才会表现出吸附诱导收缩和负气体吸附。先进的实验方法深入了解了结构转变和吸附行为。新框架DUT-160在77 K下对氮气吸附表现出有史以来最高的NGA幅度。我们对多孔框架的能量学和机械响应函数的计算与实验分析是朝着调节动态框架材料中的活化能垒迈出的重要一步,并为导致压力放大材料的分子构建块提供了关键的设计原则。