Pallach Roman, Keupp Julian, Terlinden Kai, Frentzel-Beyme Louis, Kloß Marvin, Machalica Andrea, Kotschy Julia, Vasa Suresh K, Chater Philip A, Sternemann Christian, Wharmby Michael T, Linser Rasmus, Schmid Rochus, Henke Sebastian
Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany.
Computational Materials Chemistry Group, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany.
Nat Commun. 2021 Jul 2;12(1):4097. doi: 10.1038/s41467-021-24188-4.
Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.
刺激响应型柔性金属有机框架材料(MOFs)因其在各种技术应用中具有巨大潜力,一直处于多孔材料研究的前沿。在此,我们引入了MOFs中受阻柔性的概念,这是由于框架内部分散力与无机构筑单元的几何约束不相容而产生的。通过用供能分散的烷氧基对连接体进行适当功能化来控制,这种方法产生了一系列MOFs,它们表现出一种新型的客体和温度响应结构柔性,其特征是在完全保留框架连接性和拓扑结构的情况下,晶体有序性可逆地丧失和恢复。受阻MOFs的刺激依赖性相变涉及无机构筑单元的非相关变形,这是通过全局和局部结构技术以及计算机模拟相结合来探测的。受阻柔性可能是MOF结构中的一种常见现象,而MOF结构通常被认为是刚性的,因此对于这些材料在各种应用中的性能可能至关重要。