Krause Simon, Evans Jack D, Bon Volodymyr, Senkovska Irena, Iacomi Paul, Kolbe Felicitas, Ehrling Sebastian, Troschke Erik, Getzschmann Jürgen, Többens Daniel M, Franz Alexandra, Wallacher Dirk, Yot Pascal G, Maurin Guillaume, Brunner Eike, Llewellyn Philip L, Coudert François-Xavier, Kaskel Stefan
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062, Dresden, Germany.
Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie, Paris, 75005, Paris, France.
Nat Commun. 2019 Aug 12;10(1):3632. doi: 10.1038/s41467-019-11565-3.
Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions.
可切换金属有机框架(MOFs)已被应用于各种与能源相关的存储和分离应用中,但对吸附诱导的切换转变的机理理解仍处于早期阶段。在此,我们报告了负气体吸附(NGA)的关键设计标准,压力放大材料的这一违反直觉的特性,迄今为止仅在一种高度多孔的框架化合物(DUT-49)中观察到。这些标准是通过使用先进的原位X射线和中子衍射、核磁共振光谱以及与一系列六个等规网络吸附并行的量热技术,分析微观力学、孔径、互穿、吸附焓和孔填充机制的物理效应得出的。在计算建模的辅助下,我们确定DUT-50是一种新型压力放大材料,在甲烷和氩吸附时具有明显的NGA转变。在111 K下对甲烷(CD)吸附位点进行的原位中子衍射分析,辅以巨正则蒙特卡罗模拟,揭示了最大中孔的突然填充是引发结构收缩和NGA的关键填充步骤。相比之下,互穿导致框架变硬和比孔容减小,这两个因素有效地抑制了NGA转变。