Lovell Terri C, Fosnacht Kaylin G, Colwell Curtis E, Jasti Ramesh
Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403 USA
Chem Sci. 2020 Sep 25;11(44):12029-12035. doi: 10.1039/d0sc03923c.
Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift linear variants, demonstrating the value of using strain to push the limits of low band gap materials.
环对亚苯基有望成为新型荧光材料。然而,将其荧光波长移至510 nm以上却很困难。在此,我们在CAM-B3LYP/6-311G**水平上通过计算探究了引入电子受体和供体单元对环对亚苯基光物理性质的影响。我们证明,引入供体和受体单元可将环对亚苯基的荧光波长移至1193 nm之远。这项计算工作指导了亮红色发射环对亚苯基的合成。此外,纳米环结构有助于研究应变对常见共轭聚合物供体和受体单元的影响。应变导致线性变体出现红移,证明了利用应变来拓展低带隙材料极限的价值。