Suppr超能文献

小尺寸、高应变碳纳米环的对称性破缺与荧光开启

Symmetry breaking and the turn-on fluorescence of small, highly strained carbon nanohoops.

作者信息

Lovell Terri C, Colwell Curtis E, Zakharov Lev N, Jasti Ramesh

机构信息

Department of Chemistry & Biochemistry , Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , USA . Email:

CAMCOR - Center for Advance Materials Characterization in Oregon , University of Oregon , Eugene , Oregon 97403 , USA.

出版信息

Chem Sci. 2019 Feb 25;10(13):3786-3790. doi: 10.1039/c9sc00169g. eCollection 2019 Apr 7.

Abstract

[]Cycloparaphenylenes, or "carbon nanohoops," are unique conjugated macrocycles with radially oriented π-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as []cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent []cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficients and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented π-systems.

摘要

[18]轮烯,即“碳纳米环”,是一类独特的共轭大环化合物,其具有与碳纳米管中类似的径向取向π体系。这些分子的中心对称性质和构象刚性导致了不同寻常的尺寸依赖性光物理特性。为了进一步研究这些效应并扩展可能的结构种类,本文公开了一类具有对称性破缺的新型相关碳纳米环。在这些被称为[18]轮烯的结构中,一个碳 - 碳单键移动了一个位置,以打破母体[18]轮烯的中心对称性质。有利的是,对称性破缺导致较小的纳米环发出明亮的光,这些较小的纳米环由于光学选择规则通常是不发荧光的。此外,这种简单的结构操作保留了纳米环结构最独特的特征之一——具有相对较大消光系数和量子产率的尺寸依赖性发光性质。受Tretiak及其同事早期理论工作的启发,这项联合的合成、光物理和理论研究提供了进一步的设计原则,以操控这类不断发展的具有径向取向π体系的分子的光学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc54/6446961/a57fcefe4107/c9sc00169g-f1.jpg

相似文献

1
Symmetry breaking and the turn-on fluorescence of small, highly strained carbon nanohoops.
Chem Sci. 2019 Feb 25;10(13):3786-3790. doi: 10.1039/c9sc00169g. eCollection 2019 Apr 7.
3
The Supramolecular Chemistry of Strained Carbon Nanohoops.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):559-573. doi: 10.1002/anie.201906069. Epub 2019 Sep 17.
4
Photoinduced Electron Transfer in Inclusion Complexes of Carbon Nanohoops.
Acc Chem Res. 2024 Jan 2;57(1):37-46. doi: 10.1021/acs.accounts.3c00488. Epub 2023 Dec 16.
5
Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena.
Acc Chem Res. 2015 Mar 17;48(3):557-66. doi: 10.1021/ar5004253. Epub 2015 Feb 17.
6
Synthesis, Characterization, and Resistive Memory Behaviors of Highly Strained Cyclometalated Platinum(II) Nanohoops.
J Am Chem Soc. 2024 May 15;146(19):13226-13235. doi: 10.1021/jacs.4c01243. Epub 2024 May 3.
7
The dynamic, size-dependent properties of [5]-[12]cycloparaphenylenes.
Chem Soc Rev. 2015 Sep 21;44(18):6401-10. doi: 10.1039/c5cs00143a. Epub 2015 Apr 27.
8
Synthesis, Characterization, and Computational Investigation of Bright Orange-Emitting Benzothiadiazole [10]Cycloparaphenylene.
Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14363-14367. doi: 10.1002/anie.202006350. Epub 2020 Jul 7.
9
Conformational Landscapes and Energetics of Carbon Nanohoops and their Ring-in-Ring Complexes.
J Phys Chem Lett. 2024 Jul 4;15(26):6805-6811. doi: 10.1021/acs.jpclett.4c01270. Epub 2024 Jun 24.
10
Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops.
J Am Chem Soc. 2019 Nov 20;141(46):18500-18507. doi: 10.1021/jacs.9b08584. Epub 2019 Nov 11.

引用本文的文献

1
Merging a Negatively Curved Nanographene and a Carbon Nanoring.
Precis Chem. 2023 Apr 3;1(2):107-111. doi: 10.1021/prechem.3c00009. eCollection 2023 Apr 24.
3
BODIPY-Doped Nanohoops In and Out of Conjugation.
Org Lett. 2025 May 16;27(19):4969-4973. doi: 10.1021/acs.orglett.5c01301. Epub 2025 May 5.
4
Strain-Induced Photochemical Opening of Ferrocene[6]cycloparaphenylene: Uncaging of Fe with Green Light.
J Am Chem Soc. 2025 Mar 26;147(12):10231-10237. doi: 10.1021/jacs.4c15818. Epub 2025 Jan 17.
5
Role of exciton delocalization in chiroptical properties of benzothiadiazole carbon nanohoops.
Chem Sci. 2024 Dec 20;16(3):1405-1410. doi: 10.1039/d4sc07333a. eCollection 2025 Jan 15.
6
Nanohoops in membranes: confined supramolecular spaces within phospholipid bilayer membranes.
Chem Sci. 2024 Sep 11;15(39):16367-76. doi: 10.1039/d4sc03408b.
8
Carbon Nanomaterial Fluorescent Probes and Their Biological Applications.
Chem Rev. 2024 Mar 27;124(6):3085-3185. doi: 10.1021/acs.chemrev.3c00581. Epub 2024 Mar 13.
9
Carbon Nanohoops: Multiple Molecular Templates for Exploring Spectroscopic, Electronic, and Thermoelectric Properties.
ACS Omega. 2024 Feb 22;9(9):10610-10620. doi: 10.1021/acsomega.3c08944. eCollection 2024 Mar 5.

本文引用的文献

1
Synthesis, Optoelectronic, and Supramolecular Properties of a Calix[4]arene-Cycloparaphenylene Hybrid Host.
Org Lett. 2018 Dec 7;20(23):7415-7418. doi: 10.1021/acs.orglett.8b03134. Epub 2018 Nov 15.
2
Expanding the Chemical Space of Biocompatible Fluorophores: Nanohoops in Cells.
ACS Cent Sci. 2018 Sep 26;4(9):1173-1178. doi: 10.1021/acscentsci.8b00346. Epub 2018 Aug 30.
3
Strain-Induced Double Carbon-Carbon Bond Activations of Cycloparaphenylenes by a Platinum Complex: Application to the Synthesis of Cyclic Diketones.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11418-11421. doi: 10.1002/anie.201806591. Epub 2018 Jul 31.
4
Gram-Scale Syntheses and Conductivities of [10]Cycloparaphenylene and Its Tetraalkoxy Derivatives.
J Am Chem Soc. 2017 Dec 27;139(51):18480-18483. doi: 10.1021/jacs.7b11526. Epub 2017 Dec 4.
5
Tuning Cycloparaphenylene Host Properties by Chemical Modification.
J Org Chem. 2017 Sep 15;82(18):9885-9889. doi: 10.1021/acs.joc.7b01588. Epub 2017 Aug 29.
6
Bromination of Cycloparaphenylenes: Strain-Induced Site-Selective Bis-Addition and Its Application for Late-Stage Functionalization.
Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10428-10432. doi: 10.1002/anie.201704982. Epub 2017 Jul 19.
7
An Operationally Simple and Mild Oxidative Homocoupling of Aryl Boronic Esters To Access Conformationally Constrained Macrocycles.
J Am Chem Soc. 2017 Mar 1;139(8):3106-3114. doi: 10.1021/jacs.6b12658. Epub 2017 Feb 15.
8
Macrocyclization in the Design of Organic n-Type Electronic Materials.
J Am Chem Soc. 2016 Oct 5;138(39):12861-12867. doi: 10.1021/jacs.6b05474. Epub 2016 Sep 26.
10
Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices.
Adv Mater. 2016 Jun;28(22):4306-37. doi: 10.1002/adma.201504225. Epub 2016 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验