Rovelli Grazia, Jacobs Michael I, Willis Megan D, Rapf Rebecca J, Prophet Alexander M, Wilson Kevin R
Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley 94720 CA USA
Department of Chemistry, University of California Berkeley 94720 CA USA.
Chem Sci. 2020 Oct 26;11(48):13026-13043. doi: 10.1039/d0sc04611f.
Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼10 to 10 relative to macroscale bulk solutions. Despite electrospray's relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1-4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.
电喷雾电离质谱法和电声喷雾电离质谱法(ESI-MS和ESSI-MS)已被广泛用于报告证据,表明相对于宏观规模的本体溶液,微滴和纳米滴中的许多化学反应会被显著加速10到10倍。尽管电喷雾在使用质谱法在带电液滴中生成和检测反应产物方面相对简单,但电喷雾过程本身如何影响对这些观察到的加速速率机制的解释却存在很大复杂性。ESI和ESSI都是耦合的多相过程,其中小带电液滴中的分析物作为气相离子被转移并通过质谱仪进行检测。因此,需要进行定量研究以评估多个实验因素对反应加速的幅度和机制的影响。这些因素包括:(1)反应物的蒸发浓缩作为液滴大小和初始浓度的函数,(2)气相化学和实验表面上反应的竞争,(3)电离效率和离子传输的差异以及(4)液滴电荷。我们使用数值模型、新的ESI/ESSI-MS实验数据和先前的文献来研究(1-4),以评估这些方法的局限性以及在ESI和ESSI产生的微滴和纳米滴中稳健解释加速因子所需的实验最佳实践。