Zhou Xiaohu, Du Shutong, Zhang Wenjuan, Zheng Bo
Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
Chem Sci. 2025 Mar 6;16(15):6450-6457. doi: 10.1039/d4sc08098j. eCollection 2025 Apr 9.
Microdroplet chemistry has emerged as a fascinating field, demonstrating remarkable reaction acceleration and enabling thermodynamically unfavorable processes. The spontaneous generation of hydrogen peroxide (HO) in water microdroplets presents a particularly intriguing phenomenon with significant implications for green chemistry and prebiotic processes. However, the transient nature of conventional microdroplets has hindered in-depth mechanistic investigations. This study employs ultrasound-mediated water-in-oil microdroplets to elucidate the underlying mechanism of HO generation. Under ultrasound irradiation, the HO concentration increases linearly with a production rate of 0.24 mM min, reaching 14.37 mM after one hour. Notably, 99% of this production occurs at the water-oil interface, corresponding to approximately 0.10 mM m min. Quantification of key intermediates reveals that superoxide radical (·O ) concentrations are approximately tenfold higher than those of HO and thousandfold higher than those of hydroxyl radicals (·OH). Through radical scavenging and isotope labeling experiments, we identify dissolved oxygen as the primary source and ·O as the main intermediate in HO formation, following the pathway: O → ·O → HO. We validate the critical role of the water-oil interface in initiating HO production charge separation reactions and demonstrate the significance of proton availability and surface propensity in facilitating efficient HO generation. These findings not only advance our understanding of microdroplet interfacial chemistry but also offer potential applications in atmospheric chemistry, green disinfection, and origins of life research.
微滴化学已成为一个引人入胜的领域,展现出显著的反应加速效果,并能实现热力学上不利的过程。水微滴中过氧化氢(HO)的自发产生呈现出一种特别有趣的现象,对绿色化学和生命起源前的过程具有重要意义。然而,传统微滴的瞬态性质阻碍了深入的机理研究。本研究采用超声介导的油包水微滴来阐明HO产生的潜在机制。在超声辐照下,HO浓度随生成速率0.24 mM/min呈线性增加,一小时后达到14.37 mM。值得注意的是,这种生成的99%发生在水 - 油界面,对应约0.10 mM/m²/min。关键中间体的定量分析表明,超氧自由基(·O₂⁻)的浓度比HO高约十倍,比羟基自由基(·OH)高数千倍。通过自由基清除和同位素标记实验,我们确定溶解氧是HO形成的主要来源,·O₂⁻是主要中间体,其形成途径为:O₂ → ·O₂⁻ → HO。我们验证了水 - 油界面在引发HO生成的电荷分离反应中的关键作用,并证明了质子可用性和表面倾向在促进高效HO生成中的重要性。这些发现不仅推进了我们对微滴界面化学的理解,还在大气化学、绿色消毒和生命起源研究中提供了潜在应用。