Suppr超能文献

原子构型和自旋轨道耦合对单层2H-MoWS固溶体热力学稳定性和电子带隙的影响。

Effect of atomic configuration and spin-orbit coupling on thermodynamic stability and electronic bandgap of monolayer 2H-MoWS solid solutions.

作者信息

Atthapak C, Ektarawong A, Pakornchote T, Alling B, Bovornratanaraks T

机构信息

Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.

Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.

出版信息

Phys Chem Chem Phys. 2021 Jun 23;23(24):13535-13543. doi: 10.1039/d1cp01119g.

Abstract

Through a combination of density functional theory calculations and cluster-expansion formalism, the effect of the configuration of the transition metal atoms and spin-orbit coupling on the thermodynamic stability and electronic bandgap of monolayer 2H-Mo1-xWxS2 is investigated. Our investigation reveals that, in spite of exhibiting a weak ordering tendency of Mo and W atoms at 0 K, monolayer 2H-Mo1-xWxS2 is thermodynamically stable as a single-phase random solid solution across the entire composition range at temperatures higher than 45 K. The spin-orbit coupling effect, induced mainly by W atoms, is found to have a minimal impact on the mixing thermodynamics of Mo and W atoms in monolayer 2H-Mo1-xWxS2; however, it significantly induces change in the electronic bandgap of the monolayer solid solution. We find that the band-gap energies of ordered and disordered solid solutions of monolayer 2H-Mo1-xWxS2 do not follow Vegard's law. In addition, the degree of the SOC-induced change in band-gap energy of monolayer 2H-Mo1-xWxS2 solid solutions not only depends on the Mo and W contents, but for a given alloy composition it is also affected by the configuration of the Mo and W atoms. This poses a challenge of fine-tuning the bandgap of monolayer 2H-Mo1-xWxS2 in practice just by varying the contents of Mo and W.

摘要

通过结合密度泛函理论计算和团簇展开形式,研究了过渡金属原子的构型和自旋轨道耦合对单层2H-Mo1-xWxS2的热力学稳定性和电子带隙的影响。我们的研究表明,尽管在0 K时Mo和W原子表现出较弱的有序化趋势,但在高于45 K的温度下,单层2H-Mo1-xWxS2作为单相随机固溶体在整个成分范围内是热力学稳定的。发现主要由W原子引起的自旋轨道耦合效应,对单层2H-Mo1-xWxS2中Mo和W原子的混合热力学影响最小;然而,它显著地引起了单层固溶体电子带隙的变化。我们发现单层2H-Mo1-xWxS2的有序和无序固溶体的带隙能量不遵循维加德定律。此外,单层2H-Mo1-xWxS2固溶体的自旋轨道耦合诱导带隙能量变化的程度不仅取决于Mo和W的含量,而且对于给定的合金成分,它还受Mo和W原子构型的影响。这给在实际中仅通过改变Mo和W的含量来微调单层2H-Mo1-xWxS2的带隙带来了挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验