Department of Life Sciences and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.
Methods Mol Biol. 2021;2310:17-31. doi: 10.1007/978-1-0716-1433-4_2.
Mitochondria possess a genome that codes for proteins, in the same fashion as the nuclear genome. However, the small, circular mitochondrial DNA (mtDNA) molecule has a reduced base pair content, for it can only code for 2 rRNA, 22 tRNA molecules, and 13 proteins, all of them part of the mitochondrial respiratory chain. As such, all of the other mitochondrial components derive from nuclear genome. This separation leads to a requirement for a well-tuned coordination between both genomes, in order to produce fully functional mitochondria. A vast number of pathologies have been demonstrated to involve, to some extent, alterations in mitochondrial function that, no doubt, can be caused by alterations to the respiratory chain activity. As such, several methods and techniques have been developed to assess both content and function of mitochondrial proteins, in order to help understand mitochondrial involvement on the pathogenesis of disease. In this chapter, we will address some of these methods, with the main focus being on isolated mitochondria.
线粒体拥有编码蛋白质的基因组,其方式与核基因组相同。然而,较小的环状线粒体 DNA(mtDNA)分子的碱基对含量减少,因为它只能编码 2 个 rRNA、22 个 tRNA 分子和 13 个蛋白质,所有这些都是线粒体呼吸链的一部分。因此,线粒体的所有其他成分都来自核基因组。这种分离导致需要在两个基因组之间进行良好的协调,以产生功能齐全的线粒体。大量的病理学研究已经证明,线粒体功能的改变在某种程度上涉及到,毫无疑问,这可能是由呼吸链活性的改变引起的。因此,已经开发了多种方法和技术来评估线粒体蛋白质的含量和功能,以帮助理解线粒体在疾病发病机制中的作用。在本章中,我们将介绍其中的一些方法,主要关注分离的线粒体。