Park Jae Woo
Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea.
J Chem Theory Comput. 2021 Jul 13;17(7):4092-4104. doi: 10.1021/acs.jctc.1c00272. Epub 2021 Jun 7.
An accurate description of electron correlation is one of the most challenging problems in quantum chemistry. The exact electron correlation can be obtained by means of full configuration interaction (FCI). A simple strategy for approximating FCI at a reduced computational cost is selected CI (SCI), which diagonalizes the Hamiltonian within only the chosen configuration space. Recovery of the contributions of the remaining configurations is possible with second-order perturbation theory. Here, we apply adaptive sampling configuration interaction (ASCI) combined with molecular orbital optimizations (ASCI-SCF) corrected with second-order perturbation theory (ASCI-SCF-PT2) for geometry optimization by implementing the analytical nuclear gradient algorithm for ASCI-PT2 with the -vector (Lagrangian) formalism. We demonstrate that for phenalenyl radicals and anthracene, optimized geometries and the number of unpaired electrons can be obtained at nearly the CASSCF accuracy by incorporating PT2 corrections and extrapolating them. We demonstrate the current algorithm's utility for optimizing the equilibrium geometries and electronic structures of six-ring-fused polycyclic aromatic hydrocarbons and 4-periacene.
对电子关联进行精确描述是量子化学中最具挑战性的问题之一。精确的电子关联可通过完全组态相互作用(FCI)获得。一种以降低计算成本近似FCI的简单策略是选择组态相互作用(SCI),它仅在选定的组态空间内对哈密顿量进行对角化。利用二阶微扰理论可以恢复其余组态的贡献。在此,我们应用自适应采样组态相互作用(ASCI)并结合分子轨道优化(ASCI-SCF),通过使用 -向量(拉格朗日)形式主义的ASCI-PT2解析核梯度算法,用二阶微扰理论(ASCI-SCF-PT2)校正来进行几何优化。我们证明,对于苊基自由基和蒽,通过纳入PT2校正并进行外推,可在接近完全活性空间自洽场(CASSCF)精度的情况下获得优化的几何结构和未成对电子数。我们展示了当前算法在优化六环稠合多环芳烃和4-并四苯的平衡几何结构和电子结构方面的实用性。