Suppr超能文献

腔量子电动力学完全活性空间组态相互作用理论

Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.

作者信息

Vu Nam, Mejia-Rodriguez Daniel, Bauman Nicholas P, Panyala Ajay, Mutlu Erdal, Govind Niranjan, Foley Jonathan J

机构信息

Department of Chemistry, University of North Carolina Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States.

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

出版信息

J Chem Theory Comput. 2024 Feb 13;20(3):1214-1227. doi: 10.1021/acs.jctc.3c01207. Epub 2024 Jan 30.

Abstract

Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of quantum chemistry, yielding an approach we refer to as cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for molecular dynamics simulations of polariton chemistry.

摘要

极化激元化学作为一种通过分子电子、振动或转动-振动自由度之间的强相互作用来改变化学结构、性质和反应活性的潜在途径,已引起了广泛关注。对分子极化激元进行严格的理论处理需要在平等的量子力学基础上处理物质和光子自由度。在分子电子与一个或几个分子发生强或超强耦合的极限情况下,希望使用量子化学工具来处理分子电子自由度,从而产生一种我们称为腔量子电动力学的方法,其中光子自由度在腔量子电动力学层面进行处理。在此,我们提出一种称为腔量子电动力学完全活性空间组态相互作用理论的方法,以提供基态和激发态极化激元表面,对电子和光子自由度之间的强关联效应进行平衡描述。当强电子关联和强光-物质耦合都很重要时,该方法为腔量子电动力学提供了一个平台,并且是朝着能够产生多个极化激元势能面和耦合的计算方法迈出的重要一步,这些势能面和耦合可用于极化激元化学的分子动力学模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3995/10876286/1c21f6d32411/ct3c01207_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验