Suppr超能文献

一种关于物理事件因果判断的反事实模拟模型。

A counterfactual simulation model of causal judgments for physical events.

机构信息

Department of Psychology, Stanford University.

Experimental Psychology, University College London.

出版信息

Psychol Rev. 2021 Oct;128(5):936-975. doi: 10.1037/rev0000281. Epub 2021 Jun 7.

Abstract

How do people make causal judgments about physical events? We introduce the counterfactual simulation model (CSM) which predicts causal judgments in physical settings by comparing what actually happened with what would have happened in relevant counterfactual situations. The CSM postulates different aspects of causation that capture the extent to which a cause made a difference to whether and how the outcome occurred, and whether the cause was sufficient and robust. We test the CSM in several experiments in which participants make causal judgments about dynamic collision events. A preliminary study establishes a very close quantitative mapping between causal and counterfactual judgments. Experiment 1 demonstrates that counterfactuals are necessary for explaining causal judgments. Participants' judgments differed dramatically between pairs of situations in which what actually happened was identical, but where what would have happened differed. Experiment 2 features multiple candidate causes and shows that participants' judgments are sensitive to different aspects of causation. The CSM provides a better fit to participants' judgments than a heuristic model which uses features based on what actually happened. We discuss how the CSM can be used to model the semantics of different causal verbs, how it captures related concepts such as physical support, and how its predictions extend beyond the physical domain. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

人们如何对物理事件做出因果判断?我们引入了反事实模拟模型(CSM),该模型通过比较实际发生的情况和相关反事实情况下会发生的情况,来预测物理环境中的因果判断。CSM 假设了不同方面的因果关系,这些因果关系可以捕捉到一个原因对结果是否发生以及如何发生的影响程度,以及原因是否充分和稳健。我们在几个实验中测试了 CSM,参与者对动态碰撞事件做出因果判断。一项初步研究在因果判断和反事实判断之间建立了非常密切的定量映射。实验 1 表明,反事实对于解释因果判断是必要的。在实际发生的情况相同,但可能发生的情况不同的情况下,参与者的判断差异很大。实验 2 具有多个候选原因,并表明参与者的判断对因果关系的不同方面很敏感。CSM 对参与者判断的拟合度优于使用基于实际发生情况的特征的启发式模型。我们讨论了 CSM 如何用于对不同因果动词的语义建模,它如何捕捉物理支持等相关概念,以及它的预测如何扩展到物理领域之外。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验