推断被遮挡的抛射体运动改变了视-额-顶网络的连通性。

Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network.

机构信息

Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland.

Professorship for Learning Sciences and Higher Education, ETH Zurich, Zurich, Switzerland.

出版信息

Brain Struct Funct. 2024 Sep;229(7):1605-1615. doi: 10.1007/s00429-024-02815-2. Epub 2024 Jun 25.

Abstract

Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.

摘要

预测物理环境中移动物体的行为对于各种日常活动至关重要。这种能力被认为依赖于心理模拟,并且已经表明它涉及额顶叶和早期视觉区域。然而,在直观的物理推理过程中,这些区域之间的连通模式在很大程度上仍然未知。在这项研究中,参与者在进行一项需要他们根据牛顿物理学推断被遮挡球的抛物线轨迹的任务和一项控制任务时接受了 fMRI 扫描。基于我们之前的研究表明,当解决物理推理任务时,早期视觉区域会对推断出的轨迹进行特定于任务的和类似感知的编码,本研究旨在:(i) 确定在进行物理推理任务时与早期视觉区域功能耦合的区域;(ii) 研究该区域网络内的有效连接变化。我们发现,在推断被遮挡的轨迹时,早期视觉区域与一组顶叶和运动前区域功能连接。使用动态因果建模,我们表明,预测被遮挡的轨迹与顶叶-运动前网络内的有效连接变化有关,这可能以自上而下的方式驱动内部产生的早期视觉活动。这些发现为物理推理过程中早期视觉和额顶叶区域之间的相互作用提供了新的见解,有助于我们理解预测物理结果的神经机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48d4/11374914/8220021147b2/429_2024_2815_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索