Suppr超能文献

具有目标感知深度神经网络的稳健单探头定量超声成像系统

Robust Single-Probe Quantitative Ultrasonic Imaging System With a Target-Aware Deep Neural Network.

作者信息

Kim Myeong-Gee, Oh Seokhwan, Kim Youngmin, Kwon Hyuksool, Bae Hyeon-Min

出版信息

IEEE Trans Biomed Eng. 2021 Dec;68(12):3737-3747. doi: 10.1109/TBME.2021.3086856. Epub 2021 Nov 19.

Abstract

OBJECTIVE

The speed of sound (SoS) has great potential as a quantitative imaging biomarker since it is sensitive to pathological changes in tissues. In this paper, a target-aware deep neural (TAD) network reconstructing an SoS image quantitatively from pulse-echo phase-shift maps gathered from a single conventional ultrasound probe is presented.

METHODS

In the proposed TAD network, the reconstruction process is guided by feature maps created from segmented target images for accuracy and contrast. In addition, the feature extraction process utilizes phase difference information instead of direct pulse-echo radio frequency (RF) data for robust image reconstruction against noise in the pulse-echo data.

RESULTS

The TAD network outperforms the fully convolutional network in root mean square error (RMSE), contrast-to-noise ratio (CNR), and structural similarity index (SSIM) in the presence of nearby reflectors. The measured RMSE and CNR are 5.4 m/s and 22 dB, respectively with the tissue attenuation coefficient of 2 dB/cm/MHz, which are 72% and 13 dB improvement over the state of the art design in RMSE and CNR, respectively. In the in-vivo test, the proposed method classifies the tissues in the neck area using SoS with a p-value below 0.025.

CONCLUSION

The proposed TAD network is the most accurate and robust single-probe SoS image reconstruction method reported to date.

SIGNIFICANCE

The accuracy and robustness demonstrated by the proposed SoS imaging method open up the possibilities of wide-spread clinical application of the single-probe SoS imaging system.

摘要

目的

声速(SoS)对组织病理变化敏感,作为一种定量成像生物标志物具有巨大潜力。本文提出了一种目标感知深度神经网络(TAD),可从单个传统超声探头采集的脉冲回波相移图中定量重建SoS图像。

方法

在所提出的TAD网络中,重建过程由从分割后的目标图像创建的特征图引导,以提高准确性和对比度。此外,特征提取过程利用相位差信息而非直接的脉冲回波射频(RF)数据,以针对脉冲回波数据中的噪声进行稳健的图像重建。

结果

在存在附近反射器的情况下,TAD网络在均方根误差(RMSE)、对比度噪声比(CNR)和结构相似性指数(SSIM)方面优于全卷积网络。在组织衰减系数为2 dB/cm/MHz的情况下,测得的RMSE和CNR分别为5.4 m/s和22 dB,与现有技术设计相比,RMSE和CNR分别提高了72%和13 dB。在体内测试中,所提出的方法使用SoS对颈部区域的组织进行分类,p值低于0.025。

结论

所提出的TAD网络是迄今为止报道的最准确、最稳健的单探头SoS图像重建方法。

意义

所提出的SoS成像方法所展示的准确性和稳健性为单探头SoS成像系统的广泛临床应用开辟了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验