Suppr超能文献

通过增强深度集成网络的多样性进行散焦模糊检测

Defocus Blur Detection via Boosting Diversity of Deep Ensemble Networks.

作者信息

Zhao Wenda, Hou Xueqing, He You, Lu Huchuan

出版信息

IEEE Trans Image Process. 2021;30:5426-5438. doi: 10.1109/TIP.2021.3084101. Epub 2021 Jun 8.

Abstract

Existing defocus blur detection (DBD) methods usually explore multi-scale and multi-level features to improve performance. However, defocus blur regions normally have incomplete semantic information, which will reduce DBD's performance if it can't be used properly. In this paper, we address the above problem by exploring deep ensemble networks, where we boost diversity of defocus blur detectors to force the network to generate diverse results that some rely more on high-level semantic information while some ones rely more on low-level information. Then, diverse result ensemble makes detection errors cancel out each other. Specifically, we propose two deep ensemble networks (e.g., adaptive ensemble network (AENet) and encoder-feature ensemble network (EFENet)), which focus on boosting diversity while costing less computation. AENet constructs different light-weight sequential adapters for one backbone network to generate diverse results without introducing too many parameters and computation. AENet is optimized only by the self- negative correlation loss. On the other hand, we propose EFENet by exploring the diversity of multiple encoded features and ensemble strategies of features (e.g., group-channel uniformly weighted average ensemble and self-gate weighted ensemble). Diversity is represented by encoded features with less parameters, and a simple mean squared error loss can achieve the superior performance. Experimental results demonstrate the superiority over the state-of-the-arts in terms of accuracy and speed. Codes and models are available at: https://github.com/wdzhao123/DENets.

摘要

现有的散焦模糊检测(DBD)方法通常通过探索多尺度和多层次特征来提高性能。然而,散焦模糊区域通常具有不完整的语义信息,如果不能正确利用,将会降低DBD的性能。在本文中,我们通过探索深度集成网络来解决上述问题,在该网络中,我们增强散焦模糊检测器的多样性,迫使网络生成多样化的结果,其中一些结果更多地依赖于高级语义信息,而另一些则更多地依赖于低级信息。然后,多样化的结果集成使检测误差相互抵消。具体而言,我们提出了两种深度集成网络(例如,自适应集成网络(AENet)和编码器特征集成网络(EFENet)),它们专注于在计算成本较低的情况下增强多样性。AENet为一个骨干网络构建不同的轻量级顺序适配器,以生成多样化的结果,而不会引入过多参数和计算。AENet仅通过自负相关损失进行优化。另一方面,我们通过探索多个编码特征之间的多样性和特征的集成策略(例如,组通道均匀加权平均集成和自门加权集成)来提出EFENet。多样性由参数较少的编码特征表示,并且简单的均方误差损失就能实现卓越的性能。实验结果证明了在准确性和速度方面优于现有技术。代码和模型可在以下网址获取:https://github.com/wdzhao123/DENets

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验