Suppr超能文献

DeFusionNET:通过循环融合与精炼判别性多尺度深度特征进行散焦模糊检测

DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features.

作者信息

Tang Chang, Liu Xinwang, Zheng Xiao, Li Wanqing, Xiong Jian, Wang Lizhe, Zomaya Albert Y, Longo Antonella

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):955-968. doi: 10.1109/TPAMI.2020.3014629. Epub 2022 Jan 7.

Abstract

Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.

摘要

尽管在图像散焦模糊检测方面已经取得了巨大成功,但仍存在一些未解决的挑战,例如背景杂波的干扰、尺度敏感性以及模糊区域边界细节的缺失。为了解决这些问题,我们提出了一种深度神经网络,该网络通过循环融合和细化多尺度深度特征(DeFusionNet)来进行散焦模糊检测。我们首先将来自FCN不同层的特征分别融合为浅层特征和语义特征。然后,将融合后的浅层特征传播到深层以细化检测到的散焦模糊区域的细节,将融合后的语义特征传播到浅层以协助更好地定位模糊区域。融合和细化过程循环进行。为了缩小低级和高级特征之间的差距,我们在特征传播之前嵌入一个特征自适应模块,以利用互补信息并减少不同特征层的矛盾响应。由于不同的特征通道在检测模糊区域时具有不同程度的辨别能力,我们设计了一个通道注意力模块来选择用于特征细化的有辨别力的特征。最后,将最后循环步骤中各层的输出进行融合以获得最终结果。我们收集了一个新的数据集,该数据集由各种具有挑战性的图像及其逐像素注释组成,以促进进一步的研究。在两个常用数据集和我们新收集的数据集上进行了广泛的实验,以证明DeFusionNet的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验