El Sayed Doaa S, Abdelrehim El-Sayed M
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
Chemistry department, Faculty of science, Damanhour University, Damanhur, Egypt.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Nov 15;261:120006. doi: 10.1016/j.saa.2021.120006. Epub 2021 May 26.
Investigation the molecular structure of the system requires a detailed experience in dealing with theoretical computational guides to highlight its important role. Molecular structure of three heterocyclic compounds 8,10-diphenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (HL), 8-phenyl-10-(p-tolyl)pyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (CHL) and10-(4-nitrophenyl)-8-phenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (NOL) was studied at DFT/B3LYP/6-31G (d,p) level in ethanol solvent. Spectroscopic properties such Infrared (IR, H NMR and C NMR) and ultraviolet-visible (UV-VIS) analyses were computed. Some quantum and reactivity parameters (HOMO energy, LUMO energy, energy gap, ionization potential, electron affinity, chemical potential, global softness, lipophelicity) were studied, also molecular electrostatic potential (MEP) was performed to indicate the reactive nucleophilic and electrophilic sites. The effects of H-, CH- and NO- substituents on heterocyclic ligands were studied and it was found that the electron donation sites concerned with hydrogen and methyl substituents over nitro substituent. Topological analysis using reduced density gradient (RDG) was discussed in details. To predict the relevant antiviral activity of the reported heterocyclic compounds, molecular docking simulation was applied to the crystal structure of SARS-Cov-2 viral M enzyme with 6WTT code and PL with 7JRN code. The enzymatic viral protein gives an image about the binding affinity between the target protein receptor and the heterocyclic ligands entitled. The hydrogen bonding interactions were evaluated from molecular docking with different strength for each ligand compound to discuss the efficiency of heterocyclic ligands toward viral inhibition.
研究该体系的分子结构需要具备处理理论计算指南的详细经验,以突出其重要作用。在乙醇溶剂中,采用DFT/B3LYP/6-31G(d,p)水平研究了三种杂环化合物8,10-二苯基吡啶并[3,2-e][1,2,4]三唑并[4,3-c]嘧啶-3(2H)-硫酮(HL)、8-苯基-10-(对甲苯基)吡啶并[3,2-e][1,2,4]三唑并[4,3-c]嘧啶-3(2H)-硫酮(CHL)和10-(4-硝基苯基)-8-苯基吡啶并[3,2-e][1,2,4]三唑并[4,3-c]嘧啶-3(2H)-硫酮(NOL)的分子结构。计算了红外(IR、1H NMR和13C NMR)和紫外可见(UV-VIS)等光谱性质。研究了一些量子和反应性参数(最高占据分子轨道能量、最低未占据分子轨道能量、能隙、电离势、电子亲和势、化学势、全局软度、亲脂性),还进行了分子静电势(MEP)分析以指示亲核和亲电反应位点。研究了H-、CH-和NO-取代基对杂环配体的影响,发现与氢和甲基取代基相关的电子供体位点优于硝基取代基。详细讨论了使用密度缩减梯度(RDG)的拓扑分析。为预测所报道杂环化合物的相关抗病毒活性,将分子对接模拟应用于SARS-CoV-2病毒M酶的晶体结构(代码6WTT)和PL(代码7JRN)。酶促病毒蛋白给出了目标蛋白受体与所述杂环配体之间结合亲和力的图像。通过对每种配体化合物进行不同强度的分子对接来评估氢键相互作用,以讨论杂环配体对病毒抑制的效率。