Suppr超能文献

外周血管疾病:血管内皮生长因子配体-受体系统的临床前模型和新兴治疗靶点。

Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system.

机构信息

Department of Medicine and Vascular Biology Center, Augusta University, Augusta, GA, USA.

出版信息

Expert Opin Ther Targets. 2021 May;25(5):381-391. doi: 10.1080/14728222.2021.1940139. Epub 2021 Jun 17.

Abstract

: Vascular endothelial growth factor (VEGF)-A is a sought therapeutic target for PAD treatment because of its potent role in angiogenesis. However, no therapeutic benefit was achieved in VEGF-A clinical trials, suggesting that our understanding of VEGF-A biology and ischemic angiogenic processes needs development. Alternate splicing in VEGF-A produces pro- and anti-angiogenic VEGF-A isoforms; the only difference being a 6-amino acid switch in the C-terminus of the final 8th exon of the gene. This finding has changed our understanding of VEGF-A biology and may explain the lack of benefit in VEGF-A clinical trials. It presents new therapeutic opportunities for peripheral arterial disease (PAD) treatment.: Literature search was conducted to include: 1) predicted mechanism by which the anti-angiogenic VEGF-A isoform would inhibit angiogenesis, 2) unexpected mechanism of action, and 3) how this mechanism revealed novel signaling pathways that may enhance future therapeutics in PAD.: Inhibiting a specific anti-angiogenic VEGF-A isoform in ischemic muscle promotes perfusion recovery in preclinical PAD. Additional efforts focused on the production of these isoforms, and the pathways altered by modulating different VEGF receptor-ligand interactions, and how this new data may allow bedside progress offers new approaches to PAD are discussed.I.

摘要

血管内皮生长因子(VEGF)-A 是治疗 PAD 的治疗靶点,因为它在血管生成中具有强大的作用。然而,在 VEGF-A 临床试验中并未取得治疗效果,这表明我们对 VEGF-A 生物学和缺血性血管生成过程的理解需要进一步发展。VEGF-A 的选择性剪接产生了促血管生成和抗血管生成的 VEGF-A 异构体;唯一的区别是基因最后第 8 个外显子的 C 末端有 6 个氨基酸的转换。这一发现改变了我们对 VEGF-A 生物学的理解,并可能解释了 VEGF-A 临床试验中缺乏疗效的原因。它为外周动脉疾病(PAD)的治疗提供了新的治疗机会。

进行了文献检索,包括:1)抗血管生成 VEGF-A 异构体抑制血管生成的预测机制,2)意想不到的作用机制,以及 3)这种机制揭示了哪些新的信号通路可能增强 PAD 的未来治疗效果。

在缺血性肌肉中抑制特定的抗血管生成 VEGF-A 异构体可促进临床前 PAD 中的灌注恢复。额外的研究集中在这些异构体的产生,以及通过调节不同的 VEGF 受体-配体相互作用改变的途径,以及这些新数据如何使床边进展成为可能,讨论了为 PAD 提供的新方法。

相似文献

1
Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system.
Expert Opin Ther Targets. 2021 May;25(5):381-391. doi: 10.1080/14728222.2021.1940139. Epub 2021 Jun 17.
2
VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease.
Circ Res. 2017 Jan 20;120(2):282-295. doi: 10.1161/CIRCRESAHA.116.309516. Epub 2016 Dec 14.
3
Antiangiogenic VEGFb Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease.
Circulation. 2019 Jan 8;139(2):226-242. doi: 10.1161/CIRCULATIONAHA.118.034165.
4
Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease.
J Am Heart Assoc. 2024 Oct 15;13(20):e034304. doi: 10.1161/JAHA.124.034304. Epub 2024 Oct 11.
6
Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.
Oncologist. 2015 Jun;20(6):660-73. doi: 10.1634/theoncologist.2014-0465. Epub 2015 May 22.
8
The anti-angiogenic isoforms of VEGF in health and disease.
Biochem Soc Trans. 2009 Dec;37(Pt 6):1207-13. doi: 10.1042/BST0371207.
9
MicroRNA let-7g possesses a therapeutic potential for peripheral artery disease.
J Cell Mol Med. 2017 Mar;21(3):519-529. doi: 10.1111/jcmm.12997. Epub 2016 Oct 3.

引用本文的文献

1
Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease.
J Am Heart Assoc. 2024 Oct 15;13(20):e034304. doi: 10.1161/JAHA.124.034304. Epub 2024 Oct 11.
4
Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia.
Arterioscler Thromb Vasc Biol. 2024 Aug;44(8):1764-1783. doi: 10.1161/ATVBAHA.124.320665. Epub 2024 Jun 27.
7
Diabetes mellitus in peripheral artery disease: Beyond a risk factor.
Front Cardiovasc Med. 2023 Apr 17;10:1148040. doi: 10.3389/fcvm.2023.1148040. eCollection 2023.
8
Impaired angiogenesis in diabetic critical limb ischemia is mediated by a miR-130b/INHBA signaling axis.
JCI Insight. 2023 May 22;8(10):e163041. doi: 10.1172/jci.insight.163041.

本文引用的文献

1
Macrophages and the maintenance of homeostasis.
Cell Mol Immunol. 2021 Mar;18(3):579-587. doi: 10.1038/s41423-020-00541-3. Epub 2020 Sep 15.
2
The Role of Macrophages in Vascular Repair and Regeneration after Ischemic Injury.
Int J Mol Sci. 2020 Aug 31;21(17):6328. doi: 10.3390/ijms21176328.
3
Abicipar pegol: an investigational anti-VEGF agent for the treatment of wet age-related macular degeneration.
Expert Opin Investig Drugs. 2020 Jul;29(7):651-658. doi: 10.1080/13543784.2020.1772754. Epub 2020 Jun 1.
4
Vascular endothelial growth factor receptor 1 in glioblastoma‑associated microglia/macrophages.
Oncol Rep. 2020 Jun;43(6):2083-2092. doi: 10.3892/or.2020.7553. Epub 2020 Mar 19.
5
Tumor-Associated Macrophages: Recent Insights and Therapies.
Front Oncol. 2020 Feb 25;10:188. doi: 10.3389/fonc.2020.00188. eCollection 2020.
6
8
The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity.
Front Immunol. 2020 Jan 22;10:3133. doi: 10.3389/fimmu.2019.03133. eCollection 2019.
9
Diversity, Mechanisms, and Significance of Macrophage Plasticity.
Annu Rev Pathol. 2020 Jan 24;15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718. Epub 2019 Sep 17.
10
A Novel, Five-Marker Alternative to CD16-CD14 Gating to Identify the Three Human Monocyte Subsets.
Front Immunol. 2019 Jul 26;10:1761. doi: 10.3389/fimmu.2019.01761. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验