Suppr超能文献

跨模态皮层的网络可控性可预测阳性精神病谱症状。

Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms.

机构信息

Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia.

出版信息

Biol Psychiatry. 2021 Sep 15;90(6):409-418. doi: 10.1016/j.biopsych.2021.03.016. Epub 2021 Mar 21.

Abstract

BACKGROUND

The psychosis spectrum (PS) is associated with structural dysconnectivity concentrated in transmodal cortex. However, understanding of this pathophysiology has been limited by an overreliance on examining direct interregional connectivity. Using network control theory, we measured variation in both direct and indirect connectivity to a region to gain new insights into the pathophysiology of the PS.

METHODS

We used psychosis symptom data and structural connectivity in 1068 individuals from the Philadelphia Neurodevelopmental Cohort. Applying a network control theory metric called average controllability, we estimated each brain region's capacity to leverage its direct and indirect structural connections to control linear brain dynamics. Using nonlinear regression, we determined the accuracy with which average controllability could predict PS symptoms in out-of-sample testing. We also examined the predictive performance of regional strength, which indexes only direct connections to a region, as well as several graph-theoretic measures of centrality that index indirect connectivity. Finally, we assessed how the prediction performance for PS symptoms varied over the functional hierarchy spanning unimodal to transmodal cortex.

RESULTS

Average controllability outperformed all other connectivity features at predicting positive PS symptoms and was the only feature to yield above-chance predictive performance. Improved prediction for average controllability was concentrated in transmodal cortex, whereas prediction performance for strength was uniform across the cortex, suggesting that indexing indirect connections through average controllability is crucial in association cortex.

CONCLUSIONS

Examining interindividual variation in direct and indirect structural connections to transmodal cortex is crucial for accurate prediction of positive PS symptoms.

摘要

背景

精神病谱(PS)与集中在跨模态皮层的结构连接不良有关。然而,由于过度依赖于检查直接区域间连接,这种病理生理学的理解受到了限制。使用网络控制理论,我们测量了到一个区域的直接和间接连接的变化,以深入了解 PS 的病理生理学。

方法

我们使用了来自费城神经发育队列的 1068 个人的精神病症状数据和结构连接。应用一种称为平均可控性的网络控制理论度量,我们估计了每个大脑区域利用其直接和间接结构连接来控制线性大脑动力学的能力。使用非线性回归,我们确定了平均可控性在样本外测试中预测 PS 症状的准确性。我们还检查了区域强度的预测性能,区域强度仅索引到一个区域的直接连接,以及几个索引间接连接的中心性的图论度量。最后,我们评估了 PS 症状的预测性能如何随从单模态到跨模态皮层的功能层次结构而变化。

结果

平均可控性在预测阳性 PS 症状方面优于所有其他连接特征,是唯一具有超过机会预测性能的特征。平均可控性预测性能的提高主要集中在跨模态皮层,而区域强度的预测性能在整个皮层上是一致的,这表明通过平均可控性索引间接连接对于联合皮层至关重要。

结论

检查跨模态皮层的直接和间接结构连接的个体间变异对于准确预测阳性 PS 症状至关重要。

相似文献

1
Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms.
Biol Psychiatry. 2021 Sep 15;90(6):409-418. doi: 10.1016/j.biopsych.2021.03.016. Epub 2021 Mar 21.
2
Functional neuroimaging abnormalities in youth with psychosis spectrum symptoms.
JAMA Psychiatry. 2015 May;72(5):456-65. doi: 10.1001/jamapsychiatry.2014.3169.
3
State-Dependent Functional Dysconnectivity in Youth With Psychosis Spectrum Symptoms.
Schizophr Bull. 2020 Feb 26;46(2):408-421. doi: 10.1093/schbul/sbz052.
5
Disruptions of Hierarchical Cortical Organization in Early Psychosis and Schizophrenia.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Dec;8(12):1240-1250. doi: 10.1016/j.bpsc.2023.08.008. Epub 2023 Sep 6.
6
Mapping Thalamocortical Functional Connectivity in Chronic and Early Stages of Psychotic Disorders.
Biol Psychiatry. 2016 Jun 15;79(12):1016-25. doi: 10.1016/j.biopsych.2015.06.026. Epub 2015 Jul 2.
7
Functional gradients reveal cortical hierarchy changes in multiple sclerosis.
Hum Brain Mapp. 2024 Apr 15;45(6):e26678. doi: 10.1002/hbm.26678.
8
Heritability and Cognitive Relevance of Structural Brain Controllability.
Cereb Cortex. 2020 May 14;30(5):3044-3054. doi: 10.1093/cercor/bhz293.
9
Graph propagation network captures individual specificity of the relationship between functional and structural connectivity.
Hum Brain Mapp. 2023 Jun 15;44(9):3885-3896. doi: 10.1002/hbm.26320. Epub 2023 Apr 25.
10

引用本文的文献

1
Thalamic Network Controllability Predicts Cognitive Impairment in Multiple Sclerosis.
Hum Brain Mapp. 2025 Jul;46(10):e70284. doi: 10.1002/hbm.70284.
3
Krakencoder: a unified brain connectome translation and fusion tool.
Nat Methods. 2025 Jun 5. doi: 10.1038/s41592-025-02706-2.
5
The control costs of human brain dynamics.
Netw Neurosci. 2025 Mar 3;9(1):77-99. doi: 10.1162/netn_a_00425. eCollection 2025.
6
Functional brain controllability in Parkinson's disease and its association with motor outcomes after deep brain stimulation.
Front Neurosci. 2024 Nov 7;18:1433577. doi: 10.3389/fnins.2024.1433577. eCollection 2024.
7
Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies.
Nat Biomed Eng. 2024 Sep;8(9):1142-1161. doi: 10.1038/s41551-024-01242-2. Epub 2024 Aug 5.
8
A network control theory pipeline for studying the dynamics of the structural connectome.
Nat Protoc. 2024 Dec;19(12):3721-3749. doi: 10.1038/s41596-024-01023-w. Epub 2024 Jul 29.
10
Altered Structural Connectivity and Functional Brain Dynamics in Individuals With Heavy Alcohol Use Elucidated via Network Control Theory.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Oct;9(10):1010-1018. doi: 10.1016/j.bpsc.2024.05.006. Epub 2024 Jun 3.

本文引用的文献

1
Multiscale communication in cortico-cortical networks.
Neuroimage. 2021 Nov;243:118546. doi: 10.1016/j.neuroimage.2021.118546. Epub 2021 Sep 1.
3
Timescales of spontaneous fMRI fluctuations relate to structural connectivity in the brain.
Netw Neurosci. 2020 Sep 1;4(3):788-806. doi: 10.1162/netn_a_00151. eCollection 2020.
4
Topographic gradients of intrinsic dynamics across neocortex.
Elife. 2020 Dec 17;9:e62116. doi: 10.7554/eLife.62116.
5
Models of communication and control for brain networks: distinctions, convergence, and future outlook.
Netw Neurosci. 2020 Nov 1;4(4):1122-1159. doi: 10.1162/netn_a_00158. eCollection 2020.
6
Signal propagation via cortical hierarchies.
Netw Neurosci. 2020 Nov 1;4(4):1072-1090. doi: 10.1162/netn_a_00153. eCollection 2020.
7
Network communication models improve the behavioral and functional predictive utility of the human structural connectome.
Netw Neurosci. 2020 Nov 1;4(4):980-1006. doi: 10.1162/netn_a_00161. eCollection 2020.
8
Neurodevelopmental insights into circuit dysconnectivity in schizophrenia.
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jan 10;104:110047. doi: 10.1016/j.pnpbp.2020.110047. Epub 2020 Jul 25.
9
Personality and local brain structure: Their shared genetic basis and reproducibility.
Neuroimage. 2020 Oct 15;220:117067. doi: 10.1016/j.neuroimage.2020.117067. Epub 2020 Jun 20.
10
The extent and drivers of gender imbalance in neuroscience reference lists.
Nat Neurosci. 2020 Aug;23(8):918-926. doi: 10.1038/s41593-020-0658-y. Epub 2020 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验