Ceballos Eric G, Luppi Andrea I, Castrillon Gabriel, Saggar Manish, Misic Bratislav, Riedl Valentin
Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Netw Neurosci. 2025 Mar 3;9(1):77-99. doi: 10.1162/netn_a_00425. eCollection 2025.
The human brain is a complex system with high metabolic demands and extensive connectivity that requires control to balance energy consumption and functional efficiency over time. How this control is manifested on a whole-brain scale is largely unexplored, particularly what the associated costs are. Using the network control theory, here, we introduce a novel concept, time-averaged control energy (TCE), to quantify the cost of controlling human brain dynamics at rest, as measured from functional and diffusion MRI. Importantly, TCE spatially correlates with oxygen metabolism measures from the positron emission tomography, providing insight into the bioenergetic footing of resting-state control. Examining the temporal dimension of control costs, we find that brain state transitions along a hierarchical axis from sensory to association areas are more efficient in terms of control costs and more frequent within hierarchical groups than between. This inverse correlation between temporal control costs and state visits suggests a mechanism for maintaining functional diversity while minimizing energy expenditure. By unpacking the temporal dimension of control costs, we contribute to the neuroscientific understanding of how the brain governs its functionality while managing energy expenses.
人类大脑是一个复杂的系统,具有高代谢需求和广泛的连通性,需要进行控制以平衡能量消耗和随时间变化的功能效率。这种控制在全脑尺度上如何表现,在很大程度上尚未得到探索,尤其是相关的成本是什么。在此,我们运用网络控制理论引入了一个新的概念,即时间平均控制能量(TCE),以量化从功能磁共振成像和扩散磁共振成像测量得到的静息状态下控制人类大脑动态的成本。重要的是,TCE在空间上与正电子发射断层扫描的氧代谢测量结果相关,这为静息状态控制的生物能量基础提供了见解。通过研究控制成本的时间维度,我们发现,大脑状态沿着从感觉区域到联合区域的层次轴转变,在控制成本方面更有效率,并且在层次组内比组间更频繁。时间控制成本与状态访问之间的这种负相关关系表明了一种在最小化能量消耗的同时维持功能多样性的机制。通过剖析控制成本的时间维度,我们为神经科学对大脑如何在管理能量消耗的同时控制其功能的理解做出了贡献。