Suppr超能文献

基于 Woodbury 矩阵恒等的基因组关系逆矩阵在一步法基因组评估中遗传组的实际应用。

Practical implementation of genetic groups in single-step genomic evaluations with Woodbury matrix identity-based genomic relationship inverse.

机构信息

Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.

Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.

出版信息

J Dairy Sci. 2021 Sep;104(9):10049-10058. doi: 10.3168/jds.2020-19821. Epub 2021 Jun 5.

Abstract

The growing amount of genomic information in dairy cattle has increased computational and modeling challenges in the single-step evaluations. The computational challenges are due to the dense inverses of genomic (G) and pedigree (A) relationship matrices of genotyped animals in the single-step mixed model equations. An equivalent mixed model equation is given by single-step genomic BLUP that are based on the T matrix (ssGTBLUP), where these inverses are avoided by expressing G through a product of 2 rectangular matrices, and (A) through sparse matrix blocks of the inverse of full relationship matrix A. A proper way to account genetic groups through unknown parent groups (UPG) after the Quaas-Pollak transformation (QP) is one key factor in a single-step model. When the UPG effects are incompletely accounted, the iterative solving method may have convergence problems. In this study, we investigated computational and predictive performance of ssGTBLUP with residual polygenic (RPG) effect and UPG. The QP transformation used A and, in the complete form, T and (A) matrices as well. The models were tested with official Nordic Holstein milk production test-day data and model. The results show that UPG can be easily implemented in ssGTBLUP having RPG. The complete QP transformation was computationally feasible when preconditioned conjugate gradient iteration and iteration on data without explicitly setting up G or A matrices were used. Furthermore, for good convergence of the preconditioned conjugate gradient method, a complete QP transformation was necessary.

摘要

奶牛基因组信息量的不断增加增加了单步评估中计算和建模的挑战。计算方面的挑战是由于单步混合模型方程中基因分型动物的基因组 (G) 和系谱 (A) 关系矩阵的密集逆。单步基因组 BLUP 的等效混合模型方程基于 T 矩阵 (ssGTBLUP),其中通过将 G 表示为 2 个矩形矩阵的乘积来避免这些逆,通过稀疏矩阵块来避免 (A) 全关系矩阵 A 的逆。通过 Quaas-Pollak 变换 (QP) 后对未知亲本群 (UPG) 进行适当的遗传分组是单步模型中的一个关键因素。当 UPG 效应未完全考虑时,迭代求解方法可能存在收敛问题。在这项研究中,我们研究了具有剩余多基因 (RPG) 效应和 UPG 的 ssGTBLUP 的计算和预测性能。QP 变换使用 A 以及完整形式的 T 和 (A) 矩阵。使用官方北欧荷斯坦奶牛产奶测试日数据和模型对模型进行了测试。结果表明,ssGTBLUP 可以轻松实现具有 RPG 的 UPG。当使用预处理共轭梯度迭代和不明确设置 G 或 A 矩阵的数据迭代时,完整的 QP 变换在计算上是可行的。此外,对于预处理共轭梯度方法的良好收敛性,完整的 QP 变换是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验