Suppr超能文献

具有特质特异性标记权重的计算可行的多性状单步基因组预测模型。

A computationally feasible multi-trait single-step genomic prediction model with trait-specific marker weights.

机构信息

Natural Resources Institute Finland (Luke), Jokioinen, Finland.

Geno SA, Storhamargata 44, 2317, Hamar, Norway.

出版信息

Genet Sel Evol. 2024 Aug 16;56(1):58. doi: 10.1186/s12711-024-00926-2.

Abstract

BACKGROUND

Regions of genome-wide marker data may have differing influences on the evaluated traits. This can be reflected in the genomic models by assigning different weights to the markers, which can enhance the accuracy of genomic prediction. However, the standard multi-trait single-step genomic evaluation model can be computationally infeasible when the traits are allowed to have different marker weights.

RESULTS

In this study, we developed and implemented a multi-trait single-step single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) model for large genomic data evaluations that allows for the use of precomputed trait-specific marker weights. The modifications to the standard single-step SNPBLUP model were minor and did not significantly increase the preprocessing workload. The model was tested using simulated data and marker weights precomputed using BayesA. Based on the results, memory requirements and computing time per iteration slightly increased compared to the standard single-step model without weights. Moreover, convergence of the model was slower when using marker weights, which resulted in longer total computing time. The use of marker weights, however, improved prediction accuracy.

CONCLUSIONS

We investigated a single-step SNPBLUP model that can be used to accommodate trait-specific marker weights. The marker-weighted single-step model improved prediction accuracy. The approach can be used for large genomic data evaluations using precomputed marker weights.

摘要

背景

基因组范围内标记数据的区域可能对评估的性状有不同的影响。这可以通过为标记分配不同的权重来反映在基因组模型中,从而提高基因组预测的准确性。然而,当性状允许具有不同的标记权重时,标准的多性状单步基因组评估模型可能在计算上不可行。

结果

在这项研究中,我们开发并实施了一种多性状单步单核苷酸多态性最佳线性无偏预测(SNPBLUP)模型,用于大型基因组数据评估,允许使用预先计算的性状特异性标记权重。对标准单步 SNPBLUP 模型的修改很小,不会显著增加预处理工作量。该模型使用模拟数据和使用 BayesA 预先计算的标记权重进行了测试。基于结果,与没有权重的标准单步模型相比,每个迭代的内存需求和计算时间略有增加。此外,使用标记权重时模型的收敛速度较慢,导致总计算时间更长。然而,使用标记权重提高了预测准确性。

结论

我们研究了一种单步 SNPBLUP 模型,该模型可用于适应性状特异性标记权重。标记加权单步模型提高了预测准确性。该方法可用于使用预先计算的标记权重进行大型基因组数据评估。

相似文献

2
Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome.
Heredity (Edinb). 2020 Feb;124(2):274-287. doi: 10.1038/s41437-019-0273-4. Epub 2019 Oct 22.
9
Genomic prediction of genetic merit using LD-based haplotypes in the Nordic Holstein population.
BMC Genomics. 2014 Dec 23;15(1):1171. doi: 10.1186/1471-2164-15-1171.

引用本文的文献

1
Multitrait genome-wide association best linear unbiased prediction of genetic values.
Genet Sel Evol. 2025 Mar 21;57(1):15. doi: 10.1186/s12711-025-00964-4.

本文引用的文献

3
Single-step genomic BLUP with genetic groups and automatic adjustment for allele coding.
Genet Sel Evol. 2022 Jun 2;54(1):38. doi: 10.1186/s12711-022-00721-x.
4
Breeding value reliabilities for multiple-trait single-step genomic best linear unbiased predictor.
J Dairy Sci. 2022 Jun;105(6):5221-5237. doi: 10.3168/jds.2021-21016. Epub 2022 Apr 7.
6
AlphaSimR: an R package for breeding program simulations.
G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkaa017.
7
Symposium review: Single-step genomic evaluations in dairy cattle.
J Dairy Sci. 2020 Jun;103(6):5314-5326. doi: 10.3168/jds.2019-17754. Epub 2020 Apr 22.
8
Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome.
Heredity (Edinb). 2020 Feb;124(2):274-287. doi: 10.1038/s41437-019-0273-4. Epub 2019 Oct 22.
10
Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change.
Heredity (Edinb). 2019 Sep;123(3):307-317. doi: 10.1038/s41437-019-0207-1. Epub 2019 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验