Suppr超能文献

原子尺度洞察极性芳烃在盐度影响下与方解石/盐水界面的优先结合:对低盐度水驱的启示

Atomistic insight into salinity dependent preferential binding of polar aromatics to calcite/brine interface: implications to low salinity waterflooding.

作者信息

Koleini Mohammad Mehdi, Badizad Mohammad Hasan, Mahani Hassan, Dastjerdi Ali Mirzaalian, Ayatollahi Shahab, Ghazanfari Mohammad Hossein

机构信息

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.

出版信息

Sci Rep. 2021 Jun 7;11(1):11967. doi: 10.1038/s41598-021-91402-0.

Abstract

This paper resolve the salinity-dependent interactions of polar components of crude oil at calcite-brine interface in atomic resolution. Molecular dynamics simulations carried out on the present study showed that ordered water monolayers develop immediate to a calcite substrate in contact with a saline solution. Carboxylic compounds, herein represented by benzoic acid (BA), penetrate into those hydration layers and directly linking to the calcite surface. Through a mechanism termed screening effect, development of hydrogen bonding between -COOH functional groups of BA and carbonate groups is inhibited by formation of a positively-charged Na layer over CaCO surface. Contrary to the common perception, a sodium-depleted solution potentially intensifies surface adsorption of polar hydrocarbons onto carbonate substrates; thus, shifting wetting characteristic to hydrophobic condition. In the context of enhanced oil recovery, an ion-engineered waterflooding would be more effective than injecting a solely diluted saltwater.

摘要

本文在原子分辨率下解析了原油极性成分在方解石 - 盐水界面处与盐度相关的相互作用。本研究进行的分子动力学模拟表明,与盐溶液接触的方解石基底会立即形成有序的水单层。在此以苯甲酸(BA)代表的羧酸化合物会渗透到这些水合层中,并直接与方解石表面相连。通过一种称为屏蔽效应的机制,BA的 -COOH官能团与碳酸根之间氢键的形成受到CaCO表面上带正电的Na层形成的抑制。与通常的认知相反,贫钠溶液可能会增强极性烃在碳酸盐基底上的表面吸附;因此,将润湿性转变为疏水状态。在提高采收率的背景下,离子工程注水比单纯注入稀释盐水更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b200/8184864/c7423edd756c/41598_2021_91402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验