Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
Department of Physics, University of California, Berkeley, Berkeley, United States.
Elife. 2021 Jun 8;10:e64412. doi: 10.7554/eLife.64412.
Three-dimensional eukaryotic genome organization provides the structural basis for gene regulation. In , genome folding is characterized by somatic homolog pairing, where homologous chromosomes are intimately paired from end to end; however, how homologs identify one another and pair has remained mysterious. Recently, this process has been proposed to be driven by specifically interacting 'buttons' encoded along chromosomes. Here, we turned this hypothesis into a quantitative biophysical model to demonstrate that a button-based mechanism can lead to chromosome-wide pairing. We tested our model using live-imaging measurements of chromosomal loci tagged with the MS2 and PP7 nascent RNA labeling systems. We show solid agreement between model predictions and experiments in the pairing dynamics of individual homologous loci. Our results strongly support a button-based mechanism of somatic homolog pairing in and provide a theoretical framework for revealing the molecular identity and regulation of buttons.
三维真核生物基因组组织为基因调控提供了结构基础。在 中,基因组折叠的特征是体细胞同源配对,即同源染色体从头到尾紧密配对;然而,同源染色体如何相互识别并配对一直是个谜。最近,人们提出这个过程是由染色体上特定相互作用的“按钮”编码驱动的。在这里,我们将这个假设转化为一个定量的生物物理模型,以证明基于按钮的机制可以导致染色体范围的配对。我们使用 MS2 和 PP7 新生 RNA 标记系统标记的染色体位点的活体成像测量来检验我们的模型。我们在单个同源染色体位点的配对动力学方面,展示了模型预测和实验之间的良好一致性。我们的结果强烈支持 中的基于按钮的体细胞同源配对机制,并为揭示按钮的分子身份和调控提供了理论框架。