Suppr超能文献

管理临床样本 16S rRNA 深度测序中的污染和多样细菌负荷:小数字定律的启示。

Managing Contamination and Diverse Bacterial Loads in 16S rRNA Deep Sequencing of Clinical Samples: Implications of the Law of Small Numbers.

机构信息

Department of Microbiology, Haukeland University Hospital, Bergen, Norway.

Section for Bioinformatics, Haukeland University Hospital, Bergen, Norway.

出版信息

mBio. 2021 Jun 29;12(3):e0059821. doi: 10.1128/mBio.00598-21. Epub 2021 Jun 8.

Abstract

In this article, we investigate patterns of microbial DNA contamination in targeted 16S rRNA amplicon sequencing (16S deep sequencing) and demonstrate how this can be used to filter background bacterial DNA in diagnostic microbiology. We also investigate the importance of sequencing depth. We first determined the patterns of contamination by performing repeat 16S deep sequencing of negative and positive extraction controls. This process identified a few bacterial species dominating across all replicates but also a high intersample variability among low abundance contaminant species in replicates split before PCR amplification. Replicates split after PCR amplification yielded almost identical sequencing results. On the basis of these observations, we suggest using the abundance of the most dominant contaminant species to define a threshold in each clinical sample from where identifications with lower abundances possibly represent contamination. We evaluated this approach by sequencing of a diluted, staggered mock community and of bile samples from 41 patients with acute cholangitis and noninfectious bile duct stenosis. All clinical samples were sequenced twice using different sequencing depths. We were able to demonstrate the following: (i) The high intersample variability between sequencing replicates is caused by events occurring before or during the PCR amplification step. (ii) Knowledge about the most dominant contaminant species can be used to establish sample-specific cutoffs for reliable identifications. (iii) Below the level of the most abundant contaminant, it rapidly becomes very demanding to reliably discriminate between background and true findings. (iv) Adequate sequencing depth can be claimed only when the analysis also picks up background contamination. There has been a gradual increase in 16S deep sequencing studies on infectious disease materials. Management of bacterial DNA contamination is a major challenge in such diagnostics, particularly in low biomass samples. Reporting a contaminant species as a relevant pathogen may cause unnecessary antibiotic treatment or even falsely classify a noninfectious condition as a bacterial infection. Yet, there are few studies on how to filter contamination in clinical microbiology. Here, we demonstrate that sequencing of extraction controls will not reveal the full spectrum of contaminants that could occur in the associated clinical samples. Only the most abundant contaminant species were consistently detected, and we present how this can be used to set sample specific thresholds for reliable identifications. We believe this work can facilitate the implementation of 16S deep sequencing in diagnostic laboratories. The new data we provide on the patterns of microbial DNA contamination is also important for microbiome research.

摘要

在本文中,我们研究了靶向 16S rRNA 扩增子测序(16S 深度测序)中微生物 DNA 污染的模式,并展示了如何将其用于诊断微生物学中过滤背景细菌 DNA。我们还研究了测序深度的重要性。我们首先通过对阴性和阳性提取对照进行重复 16S 深度测序来确定污染模式。这一过程确定了一些在所有重复中占主导地位的细菌物种,但在 PCR 扩增前的样本中,低丰度污染物种之间的样本间变异性也很高。在 PCR 扩增后分裂的重复产生了几乎完全相同的测序结果。基于这些观察,我们建议使用最主要的污染物物种的丰度在每个临床样本中定义一个阈值,低于该阈值的鉴定结果可能代表污染。我们通过对稀释的、交错的模拟群落和 41 例急性胆管炎和非传染性胆管狭窄患者的胆汁样本进行测序来评估了这种方法。所有临床样本均使用不同的测序深度进行了两次测序。我们能够证明以下几点:(i)测序重复之间的高样本间变异性是由 PCR 扩增步骤之前或期间发生的事件引起的。(ii)关于最主要的污染物物种的知识可以用来为可靠的鉴定建立样本特异性的截止值。(iii)低于最丰富的污染物水平,要可靠地区分背景和真实发现变得非常具有挑战性。(iv)只有当分析也能检测到背景污染时,才能声称具有足够的测序深度。 16S 深度测序在传染病材料方面的研究逐渐增加。在这种诊断中,细菌 DNA 污染的管理是一个主要挑战,特别是在低生物量样本中。将一种污染物种报告为相关病原体可能会导致不必要的抗生素治疗,甚至会错误地将非传染性疾病归类为细菌感染。然而,关于如何在临床微生物学中过滤污染的研究很少。在这里,我们证明提取对照的测序不会揭示可能出现在相关临床样本中的所有污染物的全貌。只有最丰富的污染物种是一致检测到的,我们展示了如何将其用于为可靠鉴定设置样本特异性阈值。我们相信这项工作可以促进 16S 深度测序在诊断实验室中的应用。我们提供的关于微生物 DNA 污染模式的新数据对于微生物组研究也很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f9c/8262989/3c835af9e14f/mbio.00598-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验