Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
Chemosphere. 2021 Nov;282:131033. doi: 10.1016/j.chemosphere.2021.131033. Epub 2021 Jun 2.
This paper reported the successful preparation and characterization of bio-activated carbon nanosheets (ACNSs) synthesized from tamarind (tamarind indicia) fruits shells (TFSs) by employing Chemical Vapor Deposition (CVD) tubular furnace. The preparation of pure ACNSs and also potassium hydroxide (KOH) activated carbon nanosheets (K-ACNSs) were made through a pyrolysis process with Argon (Ar) gas as an inert gas at 800 °C for 2h 30min, followed by further purifications of K-ACNSs. The scanning electron microscope (SEM) images of ACNSs and K-ACNSs explored with and without pores respectively. The SEM micrographs also explored 3D-porous microstructure sheets with thickness around 18-65 nm. Raman spectroscopy explored crystallinity, SP order and graphitization at 1577-1589 cm. The major functional groups were also observed. The photoluminescence (PL) was analyzed for K-ACNSs materials and revealed carbon emission broad peak value at 521.3 nm. As prepared ACNSs and K-ACNSs active materials was applied for three-electrode materials of energy storage supercapacitor analysis of cyclic voltammeter for -0.4 - 0.15 V at scan rates of 10-100 mV/s. The electrochemical impedance spectroscopy (EIS) was performed with low Rct values of K-ACNSs as 0.65Ω when compared to pure ACNSs as 5.03Ω. Mainly, the galvanostatic charge-discharge test carried out in ACNSs and KCNSs materials was corresponded to 77 and 245.03 F/g respectively, with respect to 1 A/g current density. Finally, we promise that this reported novel tamarind bio-waste into conductive porous carbon nanosheets could develop future energy storage applications of biomass-derived carbons.
本文报道了通过化学气相沉积(CVD)管式炉,成功制备并表征了由罗望子(Tamarindus indica)果壳合成的生物活性炭纳米片(ACNSs)。通过在 800°C 下以氩气(Ar)为惰性气体进行 2h30min 的热解过程,制备了纯 ACNSs 和氢氧化钾(KOH)活化的碳纳米片(K-ACNSs),然后对 K-ACNSs 进行进一步纯化。扫描电子显微镜(SEM)图像分别探索了具有和不具有孔的 ACNSs 和 K-ACNSs。SEM 显微照片还探索了厚度约为 18-65nm 的 3D 多孔微结构片。拉曼光谱在 1577-1589cm 处探索了结晶度、SP 有序性和石墨化。还观察到了主要的官能团。对 K-ACNSs 材料进行了光致发光(PL)分析,发现在 521.3nm 处有碳发射宽峰。所制备的 ACNSs 和 K-ACNSs 活性材料被应用于三电极材料的储能超级电容器分析,在 10-100mV/s 的扫描速率下,循环伏安法的电位范围为-0.4-0.15V。电化学阻抗谱(EIS)的 Rct 值低,K-ACNSs 为 0.65Ω,而纯 ACNSs 为 5.03Ω。主要的恒电流充放电测试在 ACNSs 和 KCNSs 材料中进行,相应的比电容分别为 77 和 245.03F/g,电流密度为 1A/g。最后,我们承诺,将这种新型的罗望子生物废料转化为导电多孔碳纳米片,可以开发基于生物质的碳在未来能源存储应用中的潜力。