Suppr超能文献

一种贝叶斯多元插补方法,用于处理具有缺失分量的双变量函数数据。

A Bayesian multiple imputation approach to bivariate functional data with missing components.

机构信息

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.

出版信息

Stat Med. 2021 Sep 30;40(22):4772-4793. doi: 10.1002/sim.9093. Epub 2021 Jun 8.

Abstract

Existing missing data methods for functional data mainly focus on reconstructing missing measurements along a single function-a univariate functional data setting. Motivated by a renal study, we focus on a bivariate functional data setting, where each sampling unit is a collection of two distinct component functions, one of which may be missing. Specifically, we propose a Bayesian multiple imputation approach based on a bivariate functional latent factor model that exploits the joint changing patterns of the component functions to allow accurate and stable imputation of one component given the other. We further extend the framework to address multilevel bivariate functional data with missing components by modeling and exploiting inter-component and intra-subject correlations. We develop a Gibbs sampling algorithm that simultaneously generates multiple imputations of missing component functions and posterior samples of model parameters. For multilevel bivariate functional data, a partially collapsed Gibbs sampler is implemented to improve computational efficiency. Our simulation study demonstrates that our methods outperform other competing methods for imputing missing components of bivariate functional data under various designs and missingness rates. The motivating renal study aims to investigate the distribution and pharmacokinetic properties of baseline and post-furosemide renogram curves that provide further insights into the underlying mechanism of renal obstruction, with post-furosemide renogram curves missing for some subjects. We apply the proposed methods to impute missing post-furosemide renogram curves and obtain more refined insights.

摘要

现有的功能数据缺失数据方法主要集中于在单变量功能数据设置中重建缺失的测量值。受肾脏研究的启发,我们关注于双变量功能数据设置,其中每个采样单元是两个不同分量函数的集合,其中一个可能缺失。具体来说,我们提出了一种基于双变量功能潜在因子模型的贝叶斯多重插补方法,该方法利用分量函数的联合变化模式,允许在给定另一个分量的情况下准确和稳定地插补一个分量。我们进一步扩展了该框架,通过对组件间和主体内相关性进行建模和利用,来解决具有缺失组件的多层次双变量功能数据。我们开发了一种 Gibbs 抽样算法,该算法可以同时生成缺失组件函数的多重插补和模型参数的后验样本。对于多层次双变量功能数据,实现了部分折叠 Gibbs 抽样器以提高计算效率。我们的模拟研究表明,在各种设计和缺失率下,我们的方法在插补双变量功能数据的缺失组件方面优于其他竞争方法。该肾脏研究旨在探讨基线和速尿后肾图曲线的分布和药代动力学特性,这些特性为深入了解肾脏阻塞的潜在机制提供了进一步的见解,其中一些受试者的速尿后肾图曲线缺失。我们应用所提出的方法来插补缺失的速尿后肾图曲线,并获得更精细的见解。

相似文献

7
Sequential BART for imputation of missing covariates.用于插补缺失协变量的顺序BART
Biostatistics. 2016 Jul;17(3):589-602. doi: 10.1093/biostatistics/kxw009. Epub 2016 Mar 15.

本文引用的文献

4
Sparse Bayesian infinite factor models.稀疏贝叶斯无限因子模型
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.
5
Bayesian latent factor regression for functional and longitudinal data.用于功能数据和纵向数据的贝叶斯潜在因子回归
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验