Suppr超能文献

一种贝叶斯多元插补方法,用于处理具有缺失分量的双变量函数数据。

A Bayesian multiple imputation approach to bivariate functional data with missing components.

机构信息

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.

出版信息

Stat Med. 2021 Sep 30;40(22):4772-4793. doi: 10.1002/sim.9093. Epub 2021 Jun 8.

Abstract

Existing missing data methods for functional data mainly focus on reconstructing missing measurements along a single function-a univariate functional data setting. Motivated by a renal study, we focus on a bivariate functional data setting, where each sampling unit is a collection of two distinct component functions, one of which may be missing. Specifically, we propose a Bayesian multiple imputation approach based on a bivariate functional latent factor model that exploits the joint changing patterns of the component functions to allow accurate and stable imputation of one component given the other. We further extend the framework to address multilevel bivariate functional data with missing components by modeling and exploiting inter-component and intra-subject correlations. We develop a Gibbs sampling algorithm that simultaneously generates multiple imputations of missing component functions and posterior samples of model parameters. For multilevel bivariate functional data, a partially collapsed Gibbs sampler is implemented to improve computational efficiency. Our simulation study demonstrates that our methods outperform other competing methods for imputing missing components of bivariate functional data under various designs and missingness rates. The motivating renal study aims to investigate the distribution and pharmacokinetic properties of baseline and post-furosemide renogram curves that provide further insights into the underlying mechanism of renal obstruction, with post-furosemide renogram curves missing for some subjects. We apply the proposed methods to impute missing post-furosemide renogram curves and obtain more refined insights.

摘要

现有的功能数据缺失数据方法主要集中于在单变量功能数据设置中重建缺失的测量值。受肾脏研究的启发,我们关注于双变量功能数据设置,其中每个采样单元是两个不同分量函数的集合,其中一个可能缺失。具体来说,我们提出了一种基于双变量功能潜在因子模型的贝叶斯多重插补方法,该方法利用分量函数的联合变化模式,允许在给定另一个分量的情况下准确和稳定地插补一个分量。我们进一步扩展了该框架,通过对组件间和主体内相关性进行建模和利用,来解决具有缺失组件的多层次双变量功能数据。我们开发了一种 Gibbs 抽样算法,该算法可以同时生成缺失组件函数的多重插补和模型参数的后验样本。对于多层次双变量功能数据,实现了部分折叠 Gibbs 抽样器以提高计算效率。我们的模拟研究表明,在各种设计和缺失率下,我们的方法在插补双变量功能数据的缺失组件方面优于其他竞争方法。该肾脏研究旨在探讨基线和速尿后肾图曲线的分布和药代动力学特性,这些特性为深入了解肾脏阻塞的潜在机制提供了进一步的见解,其中一些受试者的速尿后肾图曲线缺失。我们应用所提出的方法来插补缺失的速尿后肾图曲线,并获得更精细的见解。

相似文献

1
A Bayesian multiple imputation approach to bivariate functional data with missing components.
Stat Med. 2021 Sep 30;40(22):4772-4793. doi: 10.1002/sim.9093. Epub 2021 Jun 8.
2
A functional multiple imputation approach to incomplete longitudinal data.
Stat Med. 2011 May 10;30(10):1137-56. doi: 10.1002/sim.4201. Epub 2011 Feb 22.
3
Infinite hidden Markov models for multiple multivariate time series with missing data.
Biometrics. 2023 Sep;79(3):2592-2604. doi: 10.1111/biom.13715. Epub 2022 Jul 22.
6
Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach.
Behav Res Methods. 2021 Dec;53(6):2631-2649. doi: 10.3758/s13428-020-01530-0. Epub 2021 May 23.
7
Sequential BART for imputation of missing covariates.
Biostatistics. 2016 Jul;17(3):589-602. doi: 10.1093/biostatistics/kxw009. Epub 2016 Mar 15.
8
A nonparametric multiple imputation approach for missing categorical data.
BMC Med Res Methodol. 2017 Jun 6;17(1):87. doi: 10.1186/s12874-017-0360-2.
9
A two-step semiparametric method to accommodate sampling weights in multiple imputation.
Biometrics. 2016 Mar;72(1):242-52. doi: 10.1111/biom.12413. Epub 2015 Sep 22.
10
Multiple imputation for longitudinal data using Bayesian lasso imputation model.
Stat Med. 2022 Mar 15;41(6):1042-1058. doi: 10.1002/sim.9315. Epub 2022 Jan 21.

引用本文的文献

本文引用的文献

1
Assessing alignment between functional markers and ordinal outcomes based on broad sense agreement.
Biometrics. 2019 Dec;75(4):1367-1379. doi: 10.1111/biom.13063. Epub 2019 Apr 18.
2
A Dirichlet process mixture model for clustering longitudinal gene expression data.
Stat Med. 2017 Sep 30;36(22):3495-3506. doi: 10.1002/sim.7374. Epub 2017 Jun 15.
3
Choosing the Optimal Number of Factors in Exploratory Factor Analysis: A Model Selection Perspective.
Multivariate Behav Res. 2013 Jan;48(1):28-56. doi: 10.1080/00273171.2012.710386.
4
Sparse Bayesian infinite factor models.
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.
5
Bayesian latent factor regression for functional and longitudinal data.
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.
6
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
7
pROC: an open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011 Mar 17;12:77. doi: 10.1186/1471-2105-12-77.
8
A functional multiple imputation approach to incomplete longitudinal data.
Stat Med. 2011 May 10;30(10):1137-56. doi: 10.1002/sim.4201. Epub 2011 Feb 22.
9
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics.
J Am Stat Assoc. 2008 Dec 1;103(484):1438-1456. doi: 10.1198/016214508000000869.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验