Suppr超能文献

基于广义一致性评估功能标记与有序结果之间的一致性。

Assessing alignment between functional markers and ordinal outcomes based on broad sense agreement.

作者信息

Jang Jeong Hoon, Peng Limin, Manatunga Amita K

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.

出版信息

Biometrics. 2019 Dec;75(4):1367-1379. doi: 10.1111/biom.13063. Epub 2019 Apr 18.

Abstract

Functional markers and their quantitative features (eg, maximum value, time to maximum, area under the curve [AUC], etc) are increasingly being used in clinical studies to diagnose diseases. It is thus of interest to assess the diagnostic utility of functional markers by assessing alignment between their quantitative features and an ordinal gold standard test that reflects the severity of disease. The concept of broad sense agreement (BSA) has recently been introduced for studying the relationship between continuous and ordinal measurements, and provides a promising tool to address such a question. Our strategy is to adopt a general class of summary functionals (SFs), each of which flexibly captures a different quantitative feature of a functional marker, and study its alignment according to an ordinal outcome via BSA. We further illustrate the proposed framework using three special classes of SFs (AUC-type, magnitude-specific, and time-specific) that are widely used in clinical settings. The proposed BSA estimator is proven to be consistent and asymptotically normal given a consistent estimator for the SF. We further provide an inferential framework for comparing a pair of candidate SFs in terms of their importance on the ordinal outcome. Our simulation results demonstrate satisfactory finite-sample performance of the proposed framework. We demonstrate the application of our methods using a renal study.

摘要

功能标志物及其定量特征(如最大值、达到最大值的时间、曲线下面积[AUC]等)在临床研究中越来越多地用于疾病诊断。因此,通过评估功能标志物的定量特征与反映疾病严重程度的有序金标准测试之间的一致性来评估功能标志物的诊断效用是很有意义的。最近引入了广义一致性(BSA)的概念来研究连续测量和有序测量之间的关系,并为解决此类问题提供了一个有前景的工具。我们的策略是采用一类通用的汇总函数(SFs),每个函数灵活地捕捉功能标志物的不同定量特征,并通过BSA根据有序结果研究其一致性。我们进一步使用临床环境中广泛使用的三类特殊的SFs(AUC型、大小特异性和时间特异性)来说明所提出的框架。在给定SF的一致估计量的情况下,所提出的BSA估计量被证明是一致的且渐近正态的。我们进一步提供了一个推断框架,用于比较一对候选SFs在有序结果方面的重要性。我们的模拟结果证明了所提出框架具有令人满意的有限样本性能。我们使用一项肾脏研究展示了我们方法的应用。

相似文献

3
Nonparametric Regression Method for Broad Sense Agreement.广义一致性的非参数回归方法
J Nonparametr Stat. 2017;29(2):280-300. doi: 10.1080/10485252.2017.1303058. Epub 2017 Mar 17.

本文引用的文献

1
Nonparametric Regression Method for Broad Sense Agreement.广义一致性的非参数回归方法
J Nonparametr Stat. 2017;29(2):280-300. doi: 10.1080/10485252.2017.1303058. Epub 2017 Mar 17.
2
Tolerance bands for functional data.功能数据的公差带
Biometrics. 2016 Jun;72(2):503-12. doi: 10.1111/biom.12434. Epub 2015 Nov 17.
7
Evaluation of Reproducibility for Paired Functional Data.配对功能数据的可重复性评估。
J Multivar Anal. 2005;93(1):81-101. doi: 10.1016/j.jmva.2004.01.010.
8
Decision support systems in diuresis renography.利尿肾图中的决策支持系统。
Semin Nucl Med. 2008 Jan;38(1):67-81. doi: 10.1053/j.semnuclmed.2007.09.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验