Suppr超能文献

稀疏贝叶斯无限因子模型

Sparse Bayesian infinite factor models.

作者信息

Bhattacharya A, Dunson D B

机构信息

Department of Statistical Science, Duke University, Durham, North Carolina 27708-0251, U.S.A. ,

出版信息

Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.

Abstract

We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data.

摘要

我们专注于使用贝叶斯潜在因子模型对高维协方差矩阵进行稀疏建模。我们在因子载荷上提出了一种乘法伽马过程收缩先验,它允许引入无限多个因子,随着列索引的增加,载荷越来越向零收缩。我们在参数扩展的载荷矩阵上使用我们的先验来避免因子分析模型中典型的顺序依赖性,并开发了一种高效的吉布斯采样器,随着数据维度的增加,该采样器能很好地扩展。效率的提高是通过所提出先验的联合共轭性质实现的,这允许对载荷矩阵进行分块更新。我们提出了一种自适应吉布斯采样器,用于通过选择重要因子的数量来自动截断无限的载荷矩阵。给出了关于先验支持和截断近似界的理论结果。提出了一种快速算法来产生近似贝叶斯估计。开发了潜在因子回归方法,用于具有高维相关预测变量的应用中的预测和变量选择。通过模拟研究评估操作特性,并将该方法应用于从基因表达数据预测生存时间。

相似文献

1
Sparse Bayesian infinite factor models.稀疏贝叶斯无限因子模型
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.
2
Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.高维非平稳时间序列的自适应贝叶斯谱分析
J Comput Graph Stat. 2021;30(3):794-807. doi: 10.1080/10618600.2020.1868305. Epub 2021 Mar 1.
3
Bayesian latent factor regression for functional and longitudinal data.用于功能数据和纵向数据的贝叶斯潜在因子回归
Biometrics. 2012 Dec;68(4):1064-73. doi: 10.1111/j.1541-0420.2012.01788.x. Epub 2012 Sep 24.
7
Expandable factor analysis.可扩展因子分析
Biometrika. 2017 Sep;104(3):649-663. doi: 10.1093/biomet/asx030. Epub 2017 Jun 16.

引用本文的文献

4
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.稀疏和不规则纵向数据的因果中介分析
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.

本文引用的文献

3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验