Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
IITB-Monash Research Academy, IIT Bombay, Mumbai, India.
Nat Commun. 2021 Jun 8;12(1):3446. doi: 10.1038/s41467-021-23773-x.
The fallopian tube is lined with a highly complex folded epithelium surrounding a lumen that progressively narrows. To study the influence of this labyrinthine complexity on sperm behavior, we use droplet microfluidics to create soft curved interfaces over a range of curvatures corresponding to the in vivo environment. We reveal a dynamic response mechanism in sperm, switching from a progressive surface-aligned motility mode at low curvatures (larger droplets), to an aggressive surface-attacking mode at high curvatures (smaller droplets of <50 µm-radius). We show that sperm in the attacking mode swim ~33% slower, spend 1.66-fold longer at the interface and have a 66% lower beating amplitude than in the progressive mode. These findings demonstrate that surface curvature within the fallopian tube alters sperm motion from a faster surface aligned locomotion in distal regions to a prolonged physical contact with the epithelium near the site of fertilization, the latter being known to promote capacitation and fertilization competence.
输卵管内表面衬有高度复杂的折叠上皮细胞,围绕着逐渐变窄的管腔。为了研究这种错综复杂的结构对精子行为的影响,我们采用液滴微流控技术在一系列曲率范围内创建柔软的弯曲界面,这些曲率范围对应于体内环境。我们揭示了精子的一种动态响应机制,即从低曲率(较大液滴)时的渐进表面对齐运动模式切换为高曲率(<50µm 半径的较小液滴)时的积极表面攻击模式。我们发现,处于攻击模式的精子游动速度慢约 33%,在界面上停留的时间长 1.66 倍,拍动幅度比渐进模式低 66%。这些发现表明,输卵管内的表面曲率会改变精子的运动方式,使其从较远区域更快的表面对齐运动转变为在受精部位附近与上皮细胞的长时间物理接触,已知后者能促进获能和受精能力。