Suppr超能文献

鞭毛超微结构抑制了屈曲不稳定性,使哺乳动物精子能够在高粘度介质中导航。

Flagellar ultrastructure suppresses buckling instabilities and enables mammalian sperm navigation in high-viscosity media.

机构信息

1 Department of Mathematics, University of York , York YO10 5DD , UK.

2 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford , Oxford OX2 6GG , UK.

出版信息

J R Soc Interface. 2019 Mar 29;16(152):20180668. doi: 10.1098/rsif.2018.0668.

Abstract

Eukaryotic flagellar swimming is driven by a slender motile unit, the axoneme, which possesses an internal structure that is essentially conserved in a tremendous diversity of sperm. Mammalian sperm, however, which are internal fertilizers, also exhibit distinctive accessory structures that further dress the axoneme and alter its mechanical response. This raises the following two fundamental questions. What is the functional significance of these structures? How do they affect the flagellar waveform and ultimately cell swimming? Hence we build on previous work to develop a mathematical mechanical model of a virtual human sperm to examine the impact of mammalian sperm accessory structures on flagellar dynamics and motility. Our findings demonstrate that the accessory structures reinforce the flagellum, preventing waveform compression and symmetry-breaking buckling instabilities when the viscosity of the surrounding medium is increased. This is in agreement with previous observations of internal and external fertilizers, such as human and sea urchin spermatozoa. In turn, possession of accessory structures entails that the progressive motion during a flagellar beat cycle can be enhanced as viscosity is increased within physiological bounds. Hence the flagella of internal fertilizers, complete with accessory structures, are predicted to be advantageous in viscous physiological media compared with watery media for the fundamental role of delivering a genetic payload to the egg.

摘要

真核鞭毛的游动是由一个细长的运动单位——轴丝驱动的,轴丝具有一种内部结构,这种结构在极大的精子多样性中基本保持一致。然而,作为内部受精的哺乳动物精子,还表现出独特的附属结构,进一步修饰轴丝并改变其机械响应。这就提出了以下两个基本问题。这些结构的功能意义是什么?它们如何影响鞭毛的波形,最终影响细胞的游动?因此,我们在前人的工作基础上,构建了一个虚拟人类精子的数学力学模型,以研究哺乳动物精子附属结构对鞭毛动力学和运动的影响。我们的研究结果表明,当周围介质的粘度增加时,附属结构会增强鞭毛的强度,防止波形压缩和对称破缺的屈曲不稳定性。这与内部和外部受精剂(如人类和海胆精子)的先前观察结果一致。反过来,由于在生理范围内增加粘度可以增强鞭毛在一个拍打周期中的渐进运动,因此,在粘性生理介质中,带有附属结构的内部受精剂的鞭毛比在水介质中更具优势,因为其基本功能是将遗传有效负载传递给卵子。

相似文献

3
Rapid sperm capture: high-throughput flagellar waveform analysis.
Hum Reprod. 2019 Jul 8;34(7):1173-1185. doi: 10.1093/humrep/dez056.
4
Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters.
J Muscle Res Cell Motil. 1980 Mar;1(1):31-59. doi: 10.1007/BF00711924.
5
Human sperm steer with second harmonics of the flagellar beat.
Nat Commun. 2017 Nov 10;8(1):1415. doi: 10.1038/s41467-017-01462-y.
6
Structure and beating behavior of the sperm motility apparatus in aquatic animals.
Theriogenology. 2019 Sep 1;135:152-163. doi: 10.1016/j.theriogenology.2019.06.005. Epub 2019 Jun 10.
7
Flow-induced buckling dynamics of sperm flagella.
Phys Rev E. 2019 Dec;100(6-1):063107. doi: 10.1103/PhysRevE.100.063107.
8
Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15904-9. doi: 10.1073/pnas.1515159112. Epub 2015 Dec 10.
9
Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?
J R Soc Interface. 2010 Dec 6;7(53):1689-97. doi: 10.1098/rsif.2010.0136. Epub 2010 May 12.
10
Sperm flagella: comparative and phylogenetic perspectives of protein components.
Mol Hum Reprod. 2011 Aug;17(8):524-38. doi: 10.1093/molehr/gar034. Epub 2011 May 17.

引用本文的文献

1
The ancient and helical architecture of Elasmobranchii's spermatozoa enables progressive motility in viscous environments.
PLoS One. 2025 Feb 25;20(2):e0319354. doi: 10.1371/journal.pone.0319354. eCollection 2025.
2
Transformation of sperm structure in Octopus vulgaris: From spermatogenesis to spermatophoric release.
PLoS One. 2025 Jan 22;20(1):e0316519. doi: 10.1371/journal.pone.0316519. eCollection 2025.
3
Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D.
Adv Sci (Weinh). 2025 Feb;12(6):e2406143. doi: 10.1002/advs.202406143. Epub 2024 Dec 18.
4
In-cell structural insight into the stability of sperm microtubule doublet.
Cell Discov. 2023 Nov 21;9(1):116. doi: 10.1038/s41421-023-00606-3.
5
Human sperm rotate with a conserved direction during free swimming in four dimensions.
J Cell Sci. 2023 Nov 15;136(22). doi: 10.1242/jcs.261306. Epub 2023 Nov 29.
6
The reaction-diffusion basis of animated patterns in eukaryotic flagella.
Nat Commun. 2023 Sep 27;14(1):5638. doi: 10.1038/s41467-023-40338-2.
8
Structural specializations of the sperm tail.
Cell. 2023 Jun 22;186(13):2880-2896.e17. doi: 10.1016/j.cell.2023.05.026. Epub 2023 Jun 15.
9
The three-dimensional coarse-graining formulation of interacting elastohydrodynamic filaments and multi-body microhydrodynamics.
J R Soc Interface. 2023 May;20(202):20230021. doi: 10.1098/rsif.2023.0021. Epub 2023 May 31.
10
Modelling Motility: The Mathematics of Spermatozoa.
Front Cell Dev Biol. 2021 Jul 20;9:710825. doi: 10.3389/fcell.2021.710825. eCollection 2021.

本文引用的文献

1
The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella.
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0235.
2
Elastohydrodynamic Synchronization of Adjacent Beating Flagella.
Phys Rev Fluids. 2016 Nov 1;1. doi: 10.1103/PhysRevFluids.1.073201.
3
From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions.
J R Soc Interface. 2018 Mar;15(140). doi: 10.1098/rsif.2017.0834.
4
Human sperm swimming in a high viscosity mucus analogue.
J Theor Biol. 2018 Jun 7;446:1-10. doi: 10.1016/j.jtbi.2018.02.013. Epub 2018 Feb 17.
5
Spontaneous oscillations of elastic filaments induced by molecular motors.
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0491.
6
Human sperm steer with second harmonics of the flagellar beat.
Nat Commun. 2017 Nov 10;8(1):1415. doi: 10.1038/s41467-017-01462-y.
7
Dynamic Wrinkling and Strengthening of an Elastic Filament in a Viscous Fluid.
Phys Rev Lett. 2017 Aug 25;119(8):088001. doi: 10.1103/PhysRevLett.119.088001. Epub 2017 Aug 24.
8
The counterbend dynamics of cross-linked filament bundles and flagella.
J R Soc Interface. 2017 May;14(130). doi: 10.1098/rsif.2017.0065.
9
Coarse-Graining the Fluid Flow around a Human Sperm.
Phys Rev Lett. 2017 Mar 24;118(12):124501. doi: 10.1103/PhysRevLett.118.124501. Epub 2017 Mar 23.
10
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid.
Phys Rev Lett. 2015 Oct 16;115(16):168101. doi: 10.1103/PhysRevLett.115.168101. Epub 2015 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验