Suppr超能文献

利用深度嵌入式聚类识别和描述异质 ICU 人群中的高危聚类。

Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering.

机构信息

Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.00, 9700 RB, Groningen, The Netherlands.

Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

出版信息

Sci Rep. 2021 Jun 8;11(1):12109. doi: 10.1038/s41598-021-91297-x.

Abstract

Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better characterization of patient clusters at high risk of mortality and kidney injury. We analysed prospectively collected data including co-morbidities, clinical examination, and laboratory parameters from a minimally-selected population of 743 patients admitted to the ICU of a Dutch hospital between 2015 and 2017. We compared four clustering methodologies and trained a classifier to predict and validate cluster membership. The contribution of different variables to the predicted cluster membership was assessed using SHapley Additive exPlanations values. We found that deep embedded clustering yielded better results compared to the traditional clustering algorithms. The best cluster configuration was achieved for 6 clusters. All clusters were clinically recognizable, and differed in in-ICU, 30-day, and 90-day mortality, as well as incidence of acute kidney injury. We identified two high mortality risk clusters with at least 60%, 40%, and 30% increased. ICU, 30-day and 90-day mortality, and a low risk cluster with 25-56% lower mortality risk. This machine learning methodology combining deep embedded clustering and variable importance analysis, which we made publicly available, is a possible solution to challenges previously encountered by clustering analyses in heterogeneous patient populations and may help improve the characterization of risk groups in critical care.

摘要

危重症患者构成了一个高度异质的人群,看似不同的患者具有相似的结局,而具有相同入院诊断的患者具有相反的临床轨迹。我们旨在开发一种机器学习方法,该方法能够识别并更好地描述具有高死亡率和肾损伤风险的患者群。我们分析了从 2015 年至 2017 年期间荷兰一家医院 ICU 收治的 743 名患者前瞻性收集的包括合并症、临床检查和实验室参数在内的数据。我们比较了四种聚类方法,并训练了一个分类器来预测和验证聚类成员。使用 Shapley 加法解释值评估了不同变量对预测聚类成员的贡献。结果发现,深度嵌入式聚类比传统聚类算法产生了更好的结果。对于 6 个聚类达到了最佳聚类配置。所有聚类在 ICU 内、30 天和 90 天死亡率以及急性肾损伤的发生率方面均具有临床可识别性。我们确定了两个高死亡率风险的聚类,其 ICU、30 天和 90 天死亡率至少增加了 60%、40%和 30%,而低死亡率风险聚类的死亡率降低了 25%-56%。这种结合深度嵌入式聚类和变量重要性分析的机器学习方法是解决异质患者群体聚类分析中先前遇到的挑战的一种可能方法,可能有助于改善重症监护中的风险组特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e609/8187398/0540e2b79a70/41598_2021_91297_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验