Mechanical Engineering Program, School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City, 12588, Egypt.
Nanoelectronics Integrated Systems Center (NISC), Nile University, Sheikh Zayed City, 12588, Egypt.
Sci Rep. 2021 Jun 8;11(1):12076. doi: 10.1038/s41598-021-91136-z.
Advances of soft robotics enabled better mimicking of biological creatures and closer realization of animals' motion in the robotics field. The biological creature's movement has morphology and flexibility that is problematic deportation to a bio-inspired robot. This paper aims to study the ability to mimic turtle motion using a soft pneumatic actuator (SPA) as a turtle flipper limb. SPA's behavior is simulated using finite element analysis to design turtle flipper at 22 different geometrical configurations, and the simulations are conducted on a large pressure range (0.11-0.4 Mpa). The simulation results are validated using vision feedback with respect to varying the air pillow orientation angle. Consequently, four SPAs with different inclination angles are selected to build a bio-mimetic turtle, which is tested at two different driving configurations. The nonlinear dynamics of soft actuators, which is challenging to model the motion using traditional modeling techniques affect the turtle's motion. Conclusively, according to kinematics behavior, the turtle motion path is modeled using the Echo State Network (ESN) method, one of the reservoir computing techniques. The ESN models the turtle path with respect to the actuators' rotation motion angle with maximum root-mean-square error of [Formula: see text]. The turtle is designed to enhance the robot interaction with living creatures by mimicking their limbs' flexibility and the way of their motion.
软体机器人技术的进步使机器人领域能够更好地模拟生物生物,并更接近地实现动物的运动。生物的运动具有形态和灵活性,这使得将其移植到生物启发的机器人中变得很困难。本文旨在研究使用软气动执行器 (SPA) 作为海龟鳍状肢来模拟海龟运动的能力。使用有限元分析模拟 SPA 的行为,以设计 22 种不同几何结构的海龟鳍,模拟在很大的压力范围内(0.11-0.4 MPa)进行。使用随空气枕方位角变化的视觉反馈来验证模拟结果。因此,选择四个具有不同倾斜角度的 SPA 来构建仿生海龟,并在两种不同的驱动配置下进行测试。软体执行器的非线性动力学对运动建模具有挑战性,因为传统的建模技术难以模拟运动。结论是,根据运动学行为,使用储层计算技术之一的回声状态网络 (ESN) 方法对海龟的运动路径进行建模。ESN 模型根据致动器的旋转运动角度来建模海龟路径,最大均方根误差为 [公式:见文本]。通过模仿生物四肢的灵活性和运动方式,设计海龟旨在增强机器人与生物的交互能力。