Suppr超能文献

使用回声状态网络对具有不同取向角的软气动执行器进行建模以处理不规则时间序列数据

Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data.

作者信息

Youssef Samuel M, Soliman MennaAllah, Saleh Mahmood A, Mousa Mostafa A, Elsamanty Mahmoud, Radwan Ahmed G

机构信息

Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed City 12588, Egypt.

School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City 12588, Egypt.

出版信息

Micromachines (Basel). 2022 Jan 29;13(2):216. doi: 10.3390/mi13020216.

Abstract

Modeling of soft robotics systems proves to be an extremely difficult task, due to the large deformation of the soft materials used to make such robots. Reliable and accurate models are necessary for the control task of these soft robots. In this paper, a data-driven approach using machine learning is presented to model the kinematics of Soft Pneumatic Actuators (SPAs). An Echo State Network (ESN) architecture is used to predict the SPA's tip position in 3 axes. Initially, data from actual 3D printed SPAs is obtained to build a training dataset for the network. Irregular-intervals pressure inputs are used to drive the SPA in different actuation sequences. The network is then iteratively trained and optimized. The demonstrated method is shown to successfully model the complex non-linear behavior of the SPA, using only the control input without any feedback sensory data as additional input to the network. In addition, the ability of the network to estimate the kinematics of SPAs with different orientation angles θ is achieved. The ESN is compared to a Long Short-Term Memory (LSTM) network that is trained on the interpolated experimental data. Both networks are then tested on Finite Element Analysis (FEA) data for other θ angle SPAs not included in the training data. This methodology could offer a general approach to modeling SPAs with varying design parameters.

摘要

由于用于制造此类机器人的软材料会发生大变形,软机器人系统的建模被证明是一项极其困难的任务。可靠且准确的模型对于这些软机器人的控制任务至关重要。本文提出了一种使用机器学习的数据驱动方法来对软气动执行器(SPA)的运动学进行建模。采用回声状态网络(ESN)架构来预测SPA在三个轴向上的尖端位置。最初,获取来自实际3D打印SPA的数据以构建网络的训练数据集。使用不规则间隔的压力输入以不同的驱动序列来驱动SPA。然后对网络进行迭代训练和优化。结果表明,所展示的方法仅使用控制输入,无需任何反馈传感数据作为网络的额外输入,就能成功对SPA的复杂非线性行为进行建模。此外,该网络还具备估计不同取向角θ的SPA运动学的能力。将ESN与在插值实验数据上训练的长短期记忆(LSTM)网络进行了比较。然后,在有限元分析(FEA)数据上对这两个网络进行测试,这些数据来自训练数据中未包含的其他θ角的SPA。这种方法可以为具有不同设计参数的SPA建模提供一种通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f019/8880441/a9ca7f76a573/micromachines-13-00216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验