Suppr超能文献

利用人工智能解码恩格列净在射血分数保留型心力衰竭中的分子作用机制。

Decoding empagliflozin's molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence.

机构信息

Heart Institute, Hospital Universitari Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.

Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.

出版信息

Sci Rep. 2021 Jun 8;11(1):12025. doi: 10.1038/s41598-021-91546-z.

Abstract

The use of sodium-glucose co-transporter 2 inhibitors to treat heart failure with preserved ejection fraction (HFpEF) is under investigation in ongoing clinical trials, but the exact mechanism of action is unclear. Here we aimed to use artificial intelligence (AI) to characterize the mechanism of action of empagliflozin in HFpEF at the molecular level. We retrieved information regarding HFpEF pathophysiological motifs and differentially expressed genes/proteins, together with empagliflozin target information and bioflags, from specialized publicly available databases. Artificial neural networks and deep learning AI were used to model the molecular effects of empagliflozin in HFpEF. The model predicted that empagliflozin could reverse 59% of the protein alterations found in HFpEF. The effects of empagliflozin in HFpEF appeared to be predominantly mediated by inhibition of NHE1 (Na/H exchanger 1), with SGLT2 playing a less prominent role. The elucidated molecular mechanism of action had an accuracy of 94%. Empagliflozin's pharmacological action mainly affected cardiomyocyte oxidative stress modulation, and greatly influenced cardiomyocyte stiffness, myocardial extracellular matrix remodelling, heart concentric hypertrophy, and systemic inflammation. Validation of these in silico data was performed in vivo in patients with HFpEF by measuring the declining plasma concentrations of NOS2, the NLPR3 inflammasome, and TGF-β1 during 12 months of empagliflozin treatment. Using AI modelling, we identified that the main effect of empagliflozin in HFpEF treatment is exerted via NHE1 and is focused on cardiomyocyte oxidative stress modulation. These results support the potential use of empagliflozin in HFpEF.

摘要

钠-葡萄糖共转运蛋白 2 抑制剂(SGLT2i)被用于治疗射血分数保留的心衰(HFpEF),目前正在进行临床试验,但确切的作用机制尚不清楚。在此,我们旨在使用人工智能(AI)从分子水平上描述恩格列净治疗 HFpEF 的作用机制。我们从专门的公开数据库中检索了与 HFpEF 病理生理学特征和差异表达基因/蛋白以及恩格列净靶标信息和生物标记物相关的信息。使用人工神经网络和深度学习 AI 来模拟恩格列净在 HFpEF 中的分子作用。该模型预测恩格列净可以逆转 HFpEF 中发现的 59%的蛋白改变。恩格列净在 HFpEF 中的作用似乎主要是通过抑制 NHE1(钠/氢交换体 1)介导的,而 SGLT2 的作用则不那么明显。阐明的作用机制具有 94%的准确性。恩格列净的药理作用主要影响心肌细胞氧化应激调节,并极大地影响心肌细胞僵硬、心肌细胞外基质重塑、心脏向心性肥厚和全身炎症。通过测量 12 个月恩格列净治疗期间血浆中 NOS2、NLPR3 炎性小体和 TGF-β1 的浓度下降,在 HFpEF 患者体内对这些计算机模拟数据进行了验证。使用 AI 模型,我们确定恩格列净在 HFpEF 治疗中的主要作用是通过 NHE1 发挥的,并且主要集中在心肌细胞氧化应激调节上。这些结果支持恩格列净在 HFpEF 中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9f3/8187349/ae25c3174105/41598_2021_91546_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验