Suppr超能文献

机器学习驱动的 1 型戈谢病患者骨骼并发症生物标志物发现。

Machine Learning-Driven Biomarker Discovery for Skeletal Complications in Type 1 Gaucher Disease Patients.

机构信息

Takeda Farmacéutica España S.A., 28046 Madrid, Spain.

FEETEG, 50006 Zaragoza, Spain.

出版信息

Int J Mol Sci. 2024 Aug 6;25(16):8586. doi: 10.3390/ijms25168586.

Abstract

Type 1 Gaucher disease (GD1) is a rare, autosomal recessive disorder caused by glucocerebrosidase deficiency. Skeletal manifestations represent one of the most debilitating and potentially irreversible complications of GD1. Although imaging studies are the gold standard, early diagnostic/prognostic tools, such as molecular biomarkers, are needed for the rapid management of skeletal complications. This study aimed to identify potential protein biomarkers capable of predicting the early diagnosis of bone skeletal complications in GD1 patients using artificial intelligence. An in silico study was performed using the novel Therapeutic Performance Mapping System methodology to construct mathematical models of GD1-associated complications at the protein level. Pathophysiological characterization was performed before modeling, and a data science strategy was applied to the predicted protein activity for each protein in the models to identify classifiers. Statistical criteria were used to prioritize the most promising candidates, and 18 candidates were identified. Among them, PDGFB, IL1R2, PTH and CCL3 (MIP-1α) were highlighted due to their ease of measurement in blood. This study proposes a validated novel tool to discover new protein biomarkers to support clinician decision-making in an area where medical needs have not yet been met. However, confirming the results using in vitro and/or in vivo studies is necessary.

摘要

1 型戈谢病(GD1)是一种罕见的常染色体隐性遗传病,由葡萄糖脑苷脂酶缺乏引起。骨骼表现是 GD1 最具致残性和潜在不可逆的并发症之一。尽管影像学研究是金标准,但仍需要分子生物标志物等早期诊断/预后工具来快速管理骨骼并发症。本研究旨在使用人工智能来识别潜在的蛋白质生物标志物,以预测 GD1 患者骨骼并发症的早期诊断。使用新型治疗性能映射系统方法进行了一项计算机模拟研究,以构建 GD1 相关并发症的蛋白质水平数学模型。在建模之前进行了病理生理学特征描述,并对模型中每个蛋白质的预测蛋白活性应用数据科学策略来识别分类器。使用统计标准来优先考虑最有前途的候选者,确定了 18 个候选者。其中,PDGFB、IL1R2、PTH 和 CCL3(MIP-1α)由于其在血液中的易于测量而受到关注。本研究提出了一种经过验证的新工具,以发现新的蛋白质生物标志物,以支持尚未满足医疗需求领域的临床医生的决策。然而,使用体外和/或体内研究来确认结果是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e99/11354847/4880a056f991/ijms-25-08586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验