Suppr超能文献

计算机模拟法对法布里病病理生理学的研究 以鉴定早期细胞损伤生物标志物候选物

In Silico Modeling of Fabry Disease Pathophysiology for the Identification of Early Cellular Damage Biomarker Candidates.

机构信息

Takeda Development Center Americas Inc., Cambridge, MA 02142, USA.

Department of Internal Medicine, Albacete University Hospital, 02006 Albacete, Spain.

出版信息

Int J Mol Sci. 2024 Sep 25;25(19):10329. doi: 10.3390/ijms251910329.

Abstract

Fabry disease (FD) is an X-linked lysosomal disease whose ultimate consequences are the accumulation of sphingolipids and subsequent inflammatory events, mainly at the endothelial level. The outcomes include different nervous system manifestations as well as multiple organ damage. Despite the availability of known biomarkers, early detection of FD remains a medical need. This study aimed to develop an in silico model based on machine learning to identify candidate vascular and nervous system proteins for early FD damage detection at the cellular level. A combined systems biology and machine learning approach was carried out considering molecular characteristics of FD to create a computational model of vascular and nervous system disease. A data science strategy was applied to identify risk classifiers by using 10 K-fold cross-validation. Further biological and clinical criteria were used to prioritize the most promising candidates, resulting in the identification of 36 biomarker candidates with classifier abilities, which are easily measurable in body fluids. Among them, we propose four candidates, CAMK2A, ILK, LMNA, and KHSRP, which have high classification capabilities according to our models (cross-validated accuracy ≥ 90%) and are related to the vascular and nervous systems. These biomarkers show promise as high-risk cellular and tissue damage indicators that are potentially applicable in clinical settings, although in vivo validation is still needed.

摘要

法布里病 (FD) 是一种 X 连锁溶酶体疾病,其最终后果是鞘脂的积累和随后的炎症事件,主要在血管内皮水平。其结果包括不同的神经系统表现以及多器官损伤。尽管有已知的生物标志物,但 FD 的早期检测仍然是一个医学需求。本研究旨在开发一种基于机器学习的计算模型,以在细胞水平上识别候选血管和神经系统蛋白,用于早期 FD 损伤检测。采用了一种结合系统生物学和机器学习的方法,考虑了 FD 的分子特征,以创建血管和神经系统疾病的计算模型。应用数据科学策略,通过 10 倍 K 折交叉验证来识别风险分类器。进一步的生物学和临床标准用于优先考虑最有前途的候选者,从而确定了 36 个具有分类能力的生物标志物候选者,这些候选者在体液中易于测量。其中,我们提出了四个候选者,CAMK2A、ILK、LMNA 和 KHSRP,它们根据我们的模型具有较高的分类能力(交叉验证准确率≥90%),并且与血管和神经系统有关。这些生物标志物有望成为高风险的细胞和组织损伤标志物,在临床环境中具有潜在的应用价值,尽管仍需要进行体内验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验