Suppr超能文献

人 U1 snRNA 茎环在 mRNA 剪接中的协同作用。

Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing.

机构信息

Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.

School of Life Sciences, Arizona State University, Tempe, AZ, USA.

出版信息

RNA Biol. 2021 Dec;18(12):2576-2593. doi: 10.1080/15476286.2021.1932360. Epub 2021 Jun 9.

Abstract

During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.

摘要

在剪接体组装过程中,将内含子的 5' 和 3' 端拉近的相互作用对于成熟 mRNA 的产生至关重要。在这里,我们报告了人类 U1 小核 RNA (snRNA) 的茎环 3 (SL3) 和 4 (SL4) 在维持 U1 snRNP 最佳功能和与 U2 snRNP 形成跨内含子接触方面的协同作用。我们发现 SL3 和 SL4 结合不同的剪接体蛋白,并且通过 U1 snRNA 活性测定和 siRNA 介导的敲低,我们证明 SL3 和 SL4 分别通过 RNA 解旋酶 UAP56 和 U2 蛋白 SF3A1 发挥作用。使用 UV 交联和剪接测定的分析表明,SL3 可能促进 SL4-SF3A1 相互作用,从而增强 A 复合物的形成和前体 mRNA 的剪接。总的来说,这些结果强调了 SL3 和 SL4 的不同接触在桥接人类剪接体组装早期阶段与 pre-mRNA 结合的 U1 和 U2 snRNPs 方面的重要作用。

相似文献

1
Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing.
RNA Biol. 2021 Dec;18(12):2576-2593. doi: 10.1080/15476286.2021.1932360. Epub 2021 Jun 9.
3
Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1.
RNA. 2019 Nov;25(11):1509-1521. doi: 10.1261/rna.072256.119. Epub 2019 Aug 5.
5
The U1 snRNP protein U1C recognizes the 5' splice site in the absence of base pairing.
Nature. 2002 Sep 5;419(6902):86-90. doi: 10.1038/nature00947.
9
U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing.
Cell. 1985 Oct;42(3):737-50. doi: 10.1016/0092-8674(85)90270-3.
10
Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP.
Science. 1994 Sep 23;265(5180):1866-9. doi: 10.1126/science.8091213.

引用本文的文献

1
: A Novel Potential Tumor Biomarker or Therapeutic Target.
J Cancer. 2025 Apr 9;16(7):2353-2359. doi: 10.7150/jca.103209. eCollection 2025.
2
A nuclear RNA degradation code is recognized by PAXT for eukaryotic transcriptome surveillance.
Mol Cell. 2025 Apr 17;85(8):1575-1588.e9. doi: 10.1016/j.molcel.2025.03.010. Epub 2025 Apr 4.
3
Parsing the roles of DExD-box proteins DDX39A and DDX39B in alternative RNA splicing.
Nucleic Acids Res. 2024 Aug 12;52(14):8534-8551. doi: 10.1093/nar/gkae431.
4
Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56.
J Mol Biol. 2024 Jun 15;436(12):168604. doi: 10.1016/j.jmb.2024.168604. Epub 2024 May 8.
6
Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on introns.
RNA. 2024 Jun 17;30(7):824-838. doi: 10.1261/rna.079933.123.
7
Examining the capacity of human U1 snRNA variants to facilitate pre-mRNA splicing.
RNA. 2024 Feb 16;30(3):271-280. doi: 10.1261/rna.079892.123.
8
Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39.
Nat Commun. 2023 Sep 4;14(1):5366. doi: 10.1038/s41467-023-40254-5.
9
Early Splicing Complexes and Human Disease.
Int J Mol Sci. 2023 Jul 13;24(14):11412. doi: 10.3390/ijms241411412.
10
Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects.
Nat Rev Genet. 2023 Apr;24(4):251-269. doi: 10.1038/s41576-022-00556-8. Epub 2022 Dec 16.

本文引用的文献

2
The DExD box ATPase DDX55 is recruited to domain IV of the 28S ribosomal RNA by its C-terminal region.
RNA Biol. 2021 Aug;18(8):1124-1135. doi: 10.1080/15476286.2020.1829366. Epub 2020 Oct 13.
3
A unified mechanism for intron and exon definition and back-splicing.
Nature. 2019 Sep;573(7774):375-380. doi: 10.1038/s41586-019-1523-6. Epub 2019 Sep 4.
4
Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1.
RNA. 2019 Nov;25(11):1509-1521. doi: 10.1261/rna.072256.119. Epub 2019 Aug 5.
5
A mechanism underlying position-specific regulation of alternative splicing.
Nucleic Acids Res. 2017 Dec 1;45(21):12455-12468. doi: 10.1093/nar/gkx901.
6
Prespliceosome structure provides insights into spliceosome assembly and regulation.
Nature. 2018 Jul;559(7714):419-422. doi: 10.1038/s41586-018-0323-8. Epub 2018 Jul 11.
7
Structures of the fully assembled spliceosome before activation.
Science. 2018 Jun 29;360(6396):1423-1429. doi: 10.1126/science.aau0325. Epub 2018 May 24.
8
Structure and Conformational Dynamics of the Human Spliceosomal B Complex.
Cell. 2018 Jan 25;172(3):454-464.e11. doi: 10.1016/j.cell.2018.01.010. Epub 2018 Jan 17.
9
Structure of the human activated spliceosome in three conformational states.
Cell Res. 2018 Mar;28(3):307-322. doi: 10.1038/cr.2018.14. Epub 2018 Jan 23.
10
Structure of a human catalytic step I spliceosome.
Science. 2018 Feb 2;359(6375):537-545. doi: 10.1126/science.aar6401. Epub 2018 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验