Suppr超能文献

超导FeTeSe纳米片的化学气相沉积

Chemical Vapor Deposition of Superconducting FeTeSe Nanosheets.

作者信息

Hu Dianyi, Ye Chen, Wang Xiaowei, Zhao Xiaoxu, Kang Lixing, Liu Jiawei, Duan Ruihuan, Cao Xun, He Yanchao, Hu Junxiong, Li Shengyao, Zeng Qingsheng, Deng Ya, Yin Peng-Fei, Ariando Ariando, Huang Yizhong, Zhang Hua, Wang Xiao Renshaw, Liu Zheng

机构信息

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

出版信息

Nano Lett. 2021 Jun 23;21(12):5338-5344. doi: 10.1021/acs.nanolett.1c01577. Epub 2021 Jun 9.

Abstract

FeTeSe, a promising layered material used to realize Majorana zero modes, has attracted enormous attention in recent years. Pulsed laser deposition (PLD) and molecular-beam epitaxy (MBE) are the routine growth methods used to prepare FeTeSe thin films. However, both methods require high-vacuum conditions and polished crystalline substrates, which hinder the exploration of the topological superconductivity and related nanodevices of this material. Here we demonstrate the growth of the ultrathin FeTeSe superconductor by a facile, atmospheric pressure chemical vapor deposition (CVD) method. The composition and thickness of the two-dimensional (2D) FeTeSe nanosheets are well controlled by tuning the experimental conditions. The as-prepared FeTeSe nanosheet exhibits an onset superconducting transition temperature of 12.4 K, proving its high quality. Our work offers an effective strategy for preparing the ultrathin FeTeSe superconductor, which could become a promising platform for further study of the unconventional superconductivity in the FeTeSe system.

摘要

FeTeSe是一种有望用于实现马约拉纳零模的层状材料,近年来受到了广泛关注。脉冲激光沉积(PLD)和分子束外延(MBE)是用于制备FeTeSe薄膜的常规生长方法。然而,这两种方法都需要高真空条件和抛光的晶体衬底,这阻碍了对这种材料的拓扑超导性及相关纳米器件的探索。在此,我们展示了通过一种简便的常压化学气相沉积(CVD)方法生长超薄FeTeSe超导体。通过调整实验条件,可以很好地控制二维(2D)FeTeSe纳米片的组成和厚度。所制备的FeTeSe纳米片的超导转变起始温度为12.4 K,证明了其高质量。我们的工作为制备超薄FeTeSe超导体提供了一种有效策略,这可能成为进一步研究FeTeSe系统中非常规超导性的一个有前景的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验