Suppr超能文献

过冷液体柔软性的微观理论。

Microscopic Theory of Softness in Supercooled Liquids.

作者信息

Nandi Manoj Kumar, Bhattacharyya Sarika Maitra

机构信息

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008, India.

出版信息

Phys Rev Lett. 2021 May 21;126(20):208001. doi: 10.1103/PhysRevLett.126.208001.

Abstract

We introduce a new measure of the structure of a liquid which is the softness of the mean-field potential developed by us earlier. We find that this softness is sensitive to small changes in the structure. Then, we study its correlation with the supercooled liquid dynamics. The study involves a wide range of liquids (fragile, strong, attractive, repulsive, and active) and predicts some universal behaviors such as the softness being linearly proportional to the temperature and inversely proportional to the activation barrier of the dynamics with system dependent proportionality constants. We establish a master equation between the dynamics and the softness parameter and show that, indeed, the dynamics, when scaled by the temperature and system dependent parameters, show a data collapse when plotted against softness. The dynamics of fragile liquids show a strong softness dependence, whereas that of strong liquids show a much weaker softness dependence. We also connect the present study with the earlier studies of softness involving machine learning (ML), thus, providing a theoretical framework for understanding the ML results.

摘要

我们引入了一种新的液体结构度量方法,即我们之前提出的平均场势的柔软度。我们发现这种柔软度对结构的微小变化很敏感。然后,我们研究了它与过冷液体动力学的相关性。该研究涉及多种液体(易碎的、强的、吸引性的、排斥性的和活性的),并预测了一些普遍行为,例如柔软度与温度呈线性比例关系,与动力学的活化能垒呈反比关系,比例常数取决于系统。我们建立了动力学与柔软度参数之间的主方程,并表明,实际上,当动力学按温度和系统相关参数进行缩放时,与柔软度作图时会出现数据塌缩。易碎液体的动力学表现出强烈的柔软度依赖性,而强液体的动力学表现出较弱得多的柔软度依赖性。我们还将本研究与早期涉及机器学习(ML)的柔软度研究联系起来,从而为理解ML结果提供了一个理论框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验