Suppr超能文献

玻璃态液体的脆性:一种基于机器学习的结构方法。

Fragility in glassy liquids: A structural approach based on machine learning.

作者信息

Tah Indrajit, Ridout Sean A, Liu Andrea J

机构信息

Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Chem Phys. 2022 Sep 28;157(12):124501. doi: 10.1063/5.0099071.

Abstract

The rapid rise of viscosity or relaxation time upon supercooling is a universal hallmark of glassy liquids. The temperature dependence of viscosity, however, is quite nonuniversal for glassy liquids and is characterized by the system's "fragility," with liquids with nearly Arrhenius temperature-dependent relaxation times referred to as strong liquids and those with super-Arrhenius behavior referred to as fragile liquids. What makes some liquids strong and others fragile is still not well understood. Here, we explore this question in a family of harmonic spheres that range from extremely strong to extremely fragile, using "softness," a structural order parameter identified by machine learning to be highly correlated with dynamical rearrangements. We use a support vector machine to identify softness as the same linear combination of structural quantities across the entire family of liquids studied. We then use softness to identify the factors controlling fragility.

摘要

过冷时粘度或弛豫时间的迅速增加是玻璃态液体的一个普遍特征。然而,对于玻璃态液体来说,粘度的温度依赖性却并非普遍适用,而是由系统的“脆性”所表征,其中弛豫时间几乎与温度呈阿累尼乌斯关系的液体被称为强液体,而具有超阿累尼乌斯行为的液体则被称为脆性液体。究竟是什么使得一些液体表现为强液体而另一些表现为脆性液体,目前仍未得到很好的理解。在此,我们在一族从极强到极脆的谐振球体系中探讨这个问题,使用“柔软度”这一通过机器学习确定的结构序参量,它被发现与动力学重排高度相关。我们使用支持向量机来确定柔软度是所研究的整个液体族中结构量的相同线性组合。然后我们利用柔软度来确定控制脆性的因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验