Suppr超能文献

通过原子层沉积将应变铂催化剂直接集成到质子交换膜燃料电池中。

Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition.

作者信息

Xu Shicheng, Wang Zhaoxuan, Dull Sam, Liu Yunzhi, Lee Dong Un, Lezama Pacheco Juan S, Orazov Marat, Vullum Per Erik, Dadlani Anup Lal, Vinogradova Olga, Schindler Peter, Tam Qizhan, Schladt Thomas D, Mueller Jonathan E, Kirsch Sebastian, Huebner Gerold, Higgins Drew, Torgersen Jan, Viswanathan Venkatasubramanian, Jaramillo Thomas Francisco, Prinz Fritz B

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.

Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA.

出版信息

Adv Mater. 2021 Jul;33(30):e2007885. doi: 10.1002/adma.202007885. Epub 2021 Jun 10.

Abstract

The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mg @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.

摘要

报道了通过从原子层沉积合成的铂壳中去除可溶性核来实现晶格应变铂催化剂的设计与制备。在半电池和全电池配置中测得的氧还原反应(ORR)的卓越催化性能归因于观察到的晶格应变。通过进一步优化纳米颗粒几何形状和离聚物/碳相互作用,在膜电极组件中可实现接近0.8 A mg@0.9 V无iR时的质量活性。然而,具有高ORR活性的活性催化剂不一定能在高电流密度(HCD)区域实现高性能。为了实现高功率密度的氢燃料电池,应更多地关注HCD性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa3/11468935/21e9ea1f21f8/ADMA-33-2007885-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验