Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA.
Science. 2018 Dec 14;362(6420):1276-1281. doi: 10.1126/science.aau0630. Epub 2018 Nov 8.
Achieving high catalytic performance with the lowest possible amount of platinum is critical for fuel cell cost reduction. Here we describe a method of preparing highly active yet stable electrocatalysts containing ultralow-loading platinum content by using cobalt or bimetallic cobalt and zinc zeolitic imidazolate frameworks as precursors. Synergistic catalysis between strained platinum-cobalt core-shell nanoparticles over a platinum-group metal (PGM)-free catalytic substrate led to excellent fuel cell performance under 1 atmosphere of O or air at both high-voltage and high-current domains. Two catalysts achieved oxygen reduction reaction (ORR) mass activities of 1.08 amperes per milligram of platinum (A mg ) and 1.77 A mg and retained 64% and 15% of initial values after 30,000 voltage cycles in a fuel cell. Computational modeling reveals that the interaction between platinum-cobalt nanoparticles and PGM-free sites improves ORR activity and durability.
以尽可能少的铂载量实现高催化性能对于降低燃料电池成本至关重要。在这里,我们描述了一种通过使用钴或双金属钴和锌沸石咪唑酯骨架作为前体制备含有超低负载量铂的高活性但稳定的电催化剂的方法。在无贵金属(PGM)催化基底上,应变铂-钴核壳纳米粒子之间的协同催化作用导致在高压和大电流区域下在 1 个大气压的 O 或空气中具有优异的燃料电池性能。两种催化剂的氧还原反应(ORR)质量活度分别达到 1.08 安培每毫克铂(A mg )和 1.77 A mg ,并且在燃料电池中经过 30000 个电压循环后,保留了初始值的 64%和 15%。计算模型表明,铂-钴纳米粒子与无 PGM 位点之间的相互作用提高了 ORR 活性和耐久性。