Suppr超能文献

多阶段退化均匀化的人脸图像超分辨率技术,用于极端退化情况。

Multi-Stage Degradation Homogenization for Super-Resolution of Face Images With Extreme Degradations.

出版信息

IEEE Trans Image Process. 2021;30:5600-5612. doi: 10.1109/TIP.2021.3086595. Epub 2021 Jun 16.

Abstract

Face Super-Resolution (FSR) aims to infer High-Resolution (HR) face images from the captured Low-Resolution (LR) face image with the assistance of external information. Existing FSR methods are less effective for the LR face images captured with serious low-quality since the huge imaging/degradation gap caused by the different imaging scenarios (i.e., the complex practical imaging scenario that generates test LR images, the simple manual imaging degradation that generates the training LR images) is not considered in these algorithms. In this paper, we propose an image homogenization strategy via re-expression to solve this problem. In contrast to existing methods, we propose a homogenization projection in LR space and HR space as compensation for the classical LR/HR projection to formulate the FSR in a multi-stage framework. We then develop a re-expression process to bridge the gap between the complex degradation and the simple degradation, which can remove the heterogeneous factors such as serious noise and blur. To further improve the accuracy of the homogenization, we extract the image patch set that is invariant to degradation changes as Robust Neighbor Resources (RNR), with which these two homogenization projections re-express the input LR images and the initial inferred HR images successively. Both quantitative and qualitative results on the public datasets demonstrate the effectiveness of the proposed algorithm against the state-of-the-art methods.

摘要

人脸超分辨率 (FSR) 旨在借助外部信息,从捕获的低分辨率 (LR) 人脸图像中推断出高分辨率 (HR) 人脸图像。现有的人脸超分辨率方法对于使用严重低质量捕获的 LR 人脸图像效果较差,因为这些算法没有考虑到不同成像场景之间的巨大成像/退化差距(即生成测试 LR 图像的复杂实际成像场景,以及生成训练 LR 图像的简单手动成像退化)。在本文中,我们提出了一种通过重新表达进行图像均匀化的策略来解决这个问题。与现有方法不同,我们在 LR 空间和 HR 空间中提出了一种均匀化投影作为经典 LR/HR 投影的补偿,以在多阶段框架中构建 FSR。然后,我们开发了一个重新表达过程来弥合复杂退化和简单退化之间的差距,从而消除严重噪声和模糊等异质因素。为了进一步提高均匀化的准确性,我们提取了图像补丁集作为稳健邻域资源 (RNR),这两个均匀化投影可以依次重新表达输入的 LR 图像和初始推断的 HR 图像。在公共数据集上的定量和定性结果都表明了该算法对现有方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验