Suppr超能文献

钝顶节杆菌 BII-R7 还原和生物转化硒 (IV) 的细胞阶段划分和关键蛋白鉴定。

Delineation of cellular stages and identification of key proteins for reduction and biotransformation of Se(IV) by Stenotrophomonas bentonitica BII-R7.

机构信息

Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.

CEA, CNRS, Aix-Marseille Université, BIAM, IPM, 13108 Saint-Paul-lez-Durance, France.

出版信息

J Hazard Mater. 2021 Sep 15;418:126150. doi: 10.1016/j.jhazmat.2021.126150. Epub 2021 May 24.

Abstract

The widespread use of selenium (Se) in technological applications (e.g., solar cells and electronic devices) has led to an accumulation of this metalloid in the environment to toxic levels. The newly described bacterial strain Stenotrophomonas bentonitica BII-R7 has been demonstrated to reduce mobile Se(IV) to Se(0)-nanoparticles (Se(0)NPs) and volatile species. Amorphous Se-nanospheres are reported to aggregate to form crystalline nanostructures and trigonal selenium. We investigated the molecular mechanisms underlying the biotransformation of Se(IV) to less toxic forms using differential shotgun proteomics analysis of S. bentonitica BII-R7 grown with or without sodium selenite for three different time-points. Results showed an increase in the abundance of several proteins involved in Se(IV) reduction and stabilization of Se(0)NPs, such as glutathione reductase, in bacteria grown with Se(IV), in addition to many proteins with transport functions, including RND (resistance-nodulation-division) systems, possibly facilitating Se uptake. Notably proteins involved in oxidative stress defense (e.g., catalase/peroxidase HPI) were also induced by Se exposure. Electron microscopy analyses confirmed the biotransformation of amorphous nanospheres to trigonal Se. Overall, our results highlight the potential of S. bentonitica in reducing the bioavailability of Se, which provides a basis both for the development of bioremediation strategies and the eco-friendly synthesis of biotechnological nanomaterials.

摘要

硒(Se)在技术应用(例如太阳能电池和电子设备)中的广泛使用导致这种类金属在环境中积累到有毒水平。新描述的细菌菌株 Stenotrophomonas bentonitica BII-R7 已被证明可将可移动的 Se(IV)还原为 Se(0)-纳米粒子 (Se(0)NPs) 和挥发性物质。据报道,无定形硒纳米球聚集成晶体纳米结构和三角硒。我们使用 S. bentonitica BII-R7 的差异 shotgun 蛋白质组学分析研究了将 Se(IV)转化为毒性较低形式的分子机制,该分析是在有无亚硒酸钠的情况下生长的,并且在三个不同的时间点进行了研究。结果表明,在含有 Se(IV)的细菌中,参与 Se(IV)还原和 Se(0)NPs 稳定的几种蛋白质的丰度增加,例如谷胱甘肽还原酶,此外还有许多具有运输功能的蛋白质,包括 RND(抗性-结节-分裂)系统,可能有助于 Se 的摄取。值得注意的是,参与氧化应激防御的蛋白质(例如过氧化氢酶/过氧化物酶 HPI)也被 Se 暴露诱导。电子显微镜分析证实了无定形纳米球向三角硒的生物转化。总的来说,我们的结果强调了 Stenotrophomonas bentonitica 减少 Se 生物利用度的潜力,这为生物修复策略的发展和生物技术纳米材料的生态友好合成提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验