Suppr超能文献

基于树的自动宫颈癌调强放疗计划优化目标探索。

Tree-based exploration of the optimization objectives for automatic cervical cancer IMRT treatment planning.

机构信息

Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital &Institute, Beijing, China.

Institute of Medical Technology, Peking University Health Science Center, Beijing, China.

出版信息

Br J Radiol. 2021 Jul 1;94(1123):20210214. doi: 10.1259/bjr.20210214. Epub 2021 Jun 16.

Abstract

OBJECTIVE

To develop and evaluate a practical automatic treatment planning method for intensity-modulated radiation therapy (IMRT) in cervical cancer cases.

METHODS

A novel algorithm named as Optimization Objectives Tree Search Algorithm (OOTSA) was proposed to emulate the planning optimization process and achieve a progressively improving IMRT plan, based on the Eclipse Scripting Application Programming Interface (ESAPI). 30 previously treated cervical cancer cases were selected from the clinical database and comparison was made between the OOTSA-generated plans and clinical treated plans and RapidPlan-based (RP) plans.

RESULTS

In clinical evaluation, compared with plan scores of the clinical plans and the RP plans, 22 and 26 of the OOTSA plans were considered as clinically improved in terms of plan quality, respectively. The average conformity index (CI) for the PTV in the OOTSA plans was 0.86 ± 0.01 (mean ± 1 standard deviation), better than those in the RP plans (0.83 ± 0.02) and the clinical plans (0.71 ± 0.11). Compared with the clinical plans, the mean doses of femoral head, rectum, spinal cord and right kidney in the OOTSA plans were reduced by 2.34 ± 2.87 Gy, 1.67 ± 2.10 Gy, 4.12 ± 6.44 Gy and 1.15 ± 2.67 Gy. Compared with the RP plans, the mean doses of femoral head, spinal cord, right kidney and small intestine in the OOTSA plans were reduced by 3.31 ± 1.55 Gy, 4.25 ± 3.69 Gy, 1.54 ± 2.23 Gy and 3.33 ± 1.91 Gy, respectively. In the OOTSA plans, the mean dose of bladder was slightly increased, with 2.33 ± 2.55 Gy (versus clinical plans) and 1.37 ± 1.74 Gy ( RP plans). The average elapsed time of OOTSA and clinical planning were 59.2 ± 3.47 min and 76.53 ± 5.19 min.

CONCLUSION

The plans created by OOTSA have been shown marginally better than the manual plans, especially in preserving OARs. In addition, the time of automatic treatment planning has shown a reduction compared to a manual planning process, and the variation of plan quality was greatly reduced. Although improvement on the algorithm is warranted, this proof-of-concept study has demonstrated that the proposed approach can be a practical solution for automatic planning.

ADVANCES IN KNOWLEDGE

The proposed method is novel in the emulation strategy of the physicists' iterative operation during the planning process. Based on the existing optimizers, this method can be a simple yet effective solution for automated IMRT treatment planning.

摘要

目的

开发并评估一种用于宫颈癌调强放疗(IMRT)的实用自动治疗计划方法。

方法

基于 Eclipse 脚本应用程序编程接口(ESAPI),提出了一种名为优化目标树搜索算法(OOTSA)的新算法,以模拟规划优化过程并实现逐步改进的 IMRT 计划。从临床数据库中选择了 30 例先前治疗的宫颈癌病例,并对 OOTSA 生成的计划与临床治疗计划和 RapidPlan (RP)计划进行了比较。

结果

在临床评估中,与临床计划和 RP 计划的计划评分相比,22 个和 26 个 OOTSA 计划在计划质量方面被认为具有临床改善。OOTSA 计划中 PTV 的平均适形指数(CI)为 0.86 ± 0.01(平均值 ± 1 个标准差),优于 RP 计划(0.83 ± 0.02)和临床计划(0.71 ± 0.11)。与临床计划相比,OOTSA 计划中股骨头、直肠、脊髓和右肾的平均剂量分别降低了 2.34 ± 2.87Gy、1.67 ± 2.10Gy、4.12 ± 6.44Gy 和 1.15 ± 2.67Gy。与 RP 计划相比,OOTSA 计划中股骨头、脊髓、右肾和小肠的平均剂量分别降低了 3.31 ± 1.55Gy、4.25 ± 3.69Gy、1.54 ± 2.23Gy 和 3.33 ± 1.91Gy。在 OOTSA 计划中,膀胱的平均剂量略有增加,分别为 2.33 ± 2.55Gy(与临床计划相比)和 1.37 ± 1.74Gy(与 RP 计划相比)。OOTSA 和临床计划的平均耗时分别为 59.2 ± 3.47min 和 76.53 ± 5.19min。

结论

OOTSA 生成的计划已被证明略优于手动计划,尤其是在保护 OAR 方面。此外,与手动规划过程相比,自动治疗计划的时间有所减少,并且计划质量的变化大大减少。尽管需要对算法进行改进,但本概念验证研究表明,所提出的方法可以为自动规划提供一种实用的解决方案。

知识的进步

所提出的方法在模拟规划过程中物理学家迭代操作的策略方面是新颖的。基于现有的优化器,该方法可以成为自动 IMRT 治疗计划的一种简单而有效的解决方案。

相似文献

1
Tree-based exploration of the optimization objectives for automatic cervical cancer IMRT treatment planning.
Br J Radiol. 2021 Jul 1;94(1123):20210214. doi: 10.1259/bjr.20210214. Epub 2021 Jun 16.
3
Impact of dose calculation accuracy during optimization on lung IMRT plan quality.
J Appl Clin Med Phys. 2015 Jan 8;16(1):5137. doi: 10.1120/jacmp.v16i1.5137.
4
Automated Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820957002. doi: 10.1177/1533033820957002.
5
Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.
World J Gastroenterol. 2012 Oct 7;18(37):5266-75. doi: 10.3748/wjg.v18.i37.5266.
10
A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy.
Radiother Oncol. 2008 Nov;89(2):180-91. doi: 10.1016/j.radonc.2008.06.013. Epub 2008 Aug 8.

引用本文的文献

1
Replacing manual planning with automatic iterative planning for locally advanced rectal cancer VMAT treatment.
J Appl Clin Med Phys. 2025 Jan;26(1):e14552. doi: 10.1002/acm2.14552. Epub 2024 Oct 15.
2
An integrated solution of deep reinforcement learning for automatic IMRT treatment planning in non-small-cell lung cancer.
Front Oncol. 2023 Feb 3;13:1124458. doi: 10.3389/fonc.2023.1124458. eCollection 2023.
3
Benchmarking daily adaptation using fully automated radiotherapy treatment plan optimization for rectal cancer.
Phys Imaging Radiat Oncol. 2022 Aug 18;24:7-13. doi: 10.1016/j.phro.2022.08.006. eCollection 2022 Oct.

本文引用的文献

1
Automatic Planning for Nasopharyngeal Carcinoma Based on Progressive Optimization in RayStation Treatment Planning System.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820915710. doi: 10.1177/1533033820915710.
6
Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations.
Br J Radiol. 2018 Dec;91(1092):20180270. doi: 10.1259/bjr.20180270. Epub 2018 Sep 4.
8
Software-based evaluation of a class solution for prostate IMRT planning.
Rep Pract Oncol Radiother. 2017 Nov-Dec;22(6):441-449. doi: 10.1016/j.rpor.2017.08.001. Epub 2017 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验