Suppr超能文献

基于粒子群优化的前列腺癌术后自动容积旋转调强计划:概念验证研究。

Automatic VMAT planning for post-operative prostate cancer cases using particle swarm optimization: A proof of concept study.

机构信息

Section for Biomedical Physic, Department for Radiation Oncology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.

Section for Biomedical Physic, Department for Radiation Oncology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.

出版信息

Phys Med. 2020 Jan;69:101-109. doi: 10.1016/j.ejmp.2019.12.007. Epub 2019 Dec 17.

Abstract

OBJECTIVE

To investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.

MATERIAL AND METHODS

In PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced. Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.

RESULTS

PSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7-66.0) for manual and 65.3 Gy (62.5-65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D 67.0 Gy (66.5-67.5) vs. 66.1 Gy (64.7-66.5, p = 0.016). All other evaluated parameters (PTV D and D, rectum V and V, bladder D and V) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with -0.82 (-16.43-1.08) vs. 0.91 (-5.98-6.25).

CONCLUSION

PSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.

摘要

目的

研究粒子群优化(PSO)在全自动 VMAT 放射治疗(RT)计划中的潜力。

材料与方法

在 PSO 中,通过迭代的、统计学的方法,在规划约束的解空间中搜索最佳 RT 计划,优化候选解的种群。为了确定最佳候选解并进行最终评估,引入了基于剂量体积直方图(DVH)参数的计划质量评分(PQS)。使用自动 PSO 方法对 10 例回顾性前列腺癌术后病例进行了研究,这些病例来自我们的临床数据库,处方剂量为 EUD=66 Gy,此外还有直肠和膀胱的两个约束条件。生成的 PSO 计划与手动生成的 VMAT 计划进行了剂量学比较。

结果

PSO 成功地为 9/10 例患者提出了与手动优化相当的治疗计划。PTV 的 EUD 的中位数(范围)分别为手动计划的 65.4 Gy(64.7-66.0)和 PSO 计划的 65.3 Gy(62.5-65.5)。然而,PSO 计划在直肠 D67.0 Gy(66.5-67.5)方面的剂量明显较低,而在直肠 D66.1 Gy(64.7-66.5,p=0.016)方面的剂量明显较低。在两个计划中,所有其他评估的参数(PTV D 和 D、直肠 V 和 V、膀胱 D 和 V)都是可比的。与 PSO 计划相比,手动计划的 PQS 较低,为-0.82(-16.43-1.08),而 PSO 计划为 0.91(-5.98-6.25)。

结论

PSO 允许全自动生成与手动优化计划质量相当的 VMAT 计划。然而,在临床实施之前,需要进一步研究 PSO 特定参数的进一步适应性和 PQS 的细化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验