Suppr超能文献

深度学习神经网络融合模型与人工观察用于肺结节检测和分类的比较。

A comparison of the fusion model of deep learning neural networks with human observation for lung nodule detection and classification.

作者信息

Gürsoy Çoruh Ayşegül, Yenigün Bülent, Uzun Çağlar, Kahya Yusuf, Büyükceran Emre Utkan, Elhan Atilla, Orhan Kaan, Kayı Cangır Ayten

机构信息

Department of Radiology, School of Medicine, Ankara University, Ankara, Turkey.

Department of Thoracic Surgery, School of Medicine, Ankara University, Ankara, Turkey.

出版信息

Br J Radiol. 2021 Jul 1;94(1123):20210222. doi: 10.1259/bjr.20210222. Epub 2021 Jun 11.

Abstract

OBJECTIVES

To compare the diagnostic performance of a newly developed artificial intelligence (AI) algorithm derived from the fusion of convolution neural networks (CNN) versus human observers in the estimation of malignancy risk in pulmonary nodules.

METHODS

The study population consists of 158 nodules from 158 patients. All nodules (81 benign and 77 malignant) were determined to be malignant or benign by a radiologist based on pathologic assessment and/or follow-up imaging. Two radiologists and an AI platform analyzed the nodules based on the Lung-RADS classification. The two observers also noted the size, location, and morphologic features of the nodules. An intraclass correlation coefficient was calculated for both observers and the AI; ROC curve analysis was performed to determine diagnostic performances.

RESULTS

Nodule size, presence of spiculation, and presence of fat were significantly different between the malignant and benign nodules ( < 0.001, for all three). Eighteen (11.3%) nodules were not detected and analyzed by the AI. Observer 1, observer 2, and the AI had an AUC of 0.917 ± 0.023, 0.870 ± 0.033, and 0.790 ± 0.037 in the ROC analysis of malignity probability, respectively. The observers were in almost perfect agreement for localization, nodule size, and lung-RADS classification [κ (95% CI)=0.984 (0.961-1.000), 0.978 (0.970-0.984), and 0.924 (0.878-0.970), respectively].

CONCLUSION

The performance of the fusion AI algorithm in estimating the risk of malignancy was slightly lower than the performance of the observers. Fusion AI algorithms might be applied in an assisting role, especially for inexperienced radiologists.

ADVANCES IN KNOWLEDGE

In this study, we proposed a fusion model using four state-of-art object detectors for lung nodule detection and discrimination. The use of fusion of deep learning neural networks might be used in a supportive role for radiologists when interpreting lung nodule discrimination.

摘要

目的

比较一种新开发的、由卷积神经网络(CNN)融合衍生而来的人工智能(AI)算法与人类观察者在评估肺结节恶性风险方面的诊断性能。

方法

研究人群包括来自158名患者的158个结节。所有结节(81个良性和77个恶性)均由放射科医生根据病理评估和/或随访影像确定为恶性或良性。两名放射科医生和一个AI平台根据Lung-RADS分类对结节进行分析。两名观察者还记录了结节的大小、位置和形态特征。计算两名观察者和AI的组内相关系数;进行ROC曲线分析以确定诊断性能。

结果

恶性和良性结节在结节大小、毛刺征的存在和脂肪的存在方面存在显著差异(所有三项均P<0.001)。AI未检测和分析18个(11.3%)结节。在恶性概率的ROC分析中,观察者1、观察者2和AI的AUC分别为0.917±0.023、0.870±0.033和0.790±0.037。观察者在定位、结节大小和Lung-RADS分类方面几乎完全一致[κ(95%CI)分别为0.984(0.961-1.000)、0.978(0.970-0.984)和0.924(0.878-0.970)]。

结论

融合AI算法在估计恶性风险方面的性能略低于观察者。融合AI算法可能起到辅助作用,尤其是对于经验不足的放射科医生。

知识进展

在本研究中,我们提出了一种使用四种先进目标检测器的融合模型用于肺结节检测和鉴别。深度学习神经网络的融合在放射科医生解读肺结节鉴别时可能起到支持作用。

相似文献

2
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
Eur Radiol. 2020 Apr;30(4):1847-1855. doi: 10.1007/s00330-019-06533-w. Epub 2019 Dec 6.
3
Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers.
PLoS One. 2017 Nov 9;12(11):e0185032. doi: 10.1371/journal.pone.0185032. eCollection 2017.
4
Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.
JAMA Netw Open. 2020 Sep 1;3(9):e2017135. doi: 10.1001/jamanetworkopen.2020.17135.
5
Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation.
Eur Radiol. 2024 Oct;34(10):6639-6651. doi: 10.1007/s00330-024-10714-7. Epub 2024 Mar 27.
6
Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images.
Eur Radiol. 2024 Jul;34(7):4218-4229. doi: 10.1007/s00330-023-10518-1. Epub 2023 Dec 20.
8
Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
Oncologist. 2019 Sep;24(9):1159-1165. doi: 10.1634/theoncologist.2018-0908. Epub 2019 Apr 17.
9
Lung Nodule Detectability of Artificial Intelligence-assisted CT Image Reading in Lung Cancer Screening.
Curr Med Imaging. 2022;18(3):327-334. doi: 10.2174/1573405617666210806125953.
10
An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification.
Comput Methods Programs Biomed. 2023 Feb;229:107278. doi: 10.1016/j.cmpb.2022.107278. Epub 2022 Nov 26.

引用本文的文献

2
Standalone deep learning versus experts for diagnosis lung cancer on chest computed tomography: a systematic review.
Eur Radiol. 2024 Nov;34(11):7397-7407. doi: 10.1007/s00330-024-10804-6. Epub 2024 May 22.
4
Are deep learning classification results obtained on CT scans fair and interpretable?
Phys Eng Sci Med. 2024 Sep;47(3):967-979. doi: 10.1007/s13246-024-01419-8. Epub 2024 Apr 4.
5
The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics.
Cancers (Basel). 2024 Mar 6;16(5):1076. doi: 10.3390/cancers16051076.
8
Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis.
Cancers (Basel). 2022 Aug 9;14(16):3856. doi: 10.3390/cancers14163856.
9
A CT-Based Radiomic Signature for the Differentiation of Pulmonary Hamartomas from Carcinoid Tumors.
Diagnostics (Basel). 2022 Feb 5;12(2):416. doi: 10.3390/diagnostics12020416.

本文引用的文献

2
Is it possible to discriminate pulmonary carcinoids from hamartomas based on CT features?
Clin Imaging. 2020 Jun;62:49-56. doi: 10.1016/j.clinimag.2020.02.001. Epub 2020 Feb 8.
3
Classification of benign and malignant lung nodules from CT images based on hybrid features.
Phys Med Biol. 2019 Jun 20;64(12):125011. doi: 10.1088/1361-6560/ab2544.
4
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.
Nat Med. 2019 Jun;25(6):954-961. doi: 10.1038/s41591-019-0447-x. Epub 2019 May 20.
5
The present and future of deep learning in radiology.
Eur J Radiol. 2019 May;114:14-24. doi: 10.1016/j.ejrad.2019.02.038. Epub 2019 Mar 2.
6
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
7
Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
Med Phys. 2018 Apr;45(4):1537-1549. doi: 10.1002/mp.12820. Epub 2018 Mar 12.
8
Radiomic features analysis in computed tomography images of lung nodule classification.
PLoS One. 2018 Feb 5;13(2):e0192002. doi: 10.1371/journal.pone.0192002. eCollection 2018.
9
Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers.
PLoS One. 2017 Nov 9;12(11):e0185032. doi: 10.1371/journal.pone.0185032. eCollection 2017.
10
Lung-RADS: Pushing the Limits.
Radiographics. 2017 Nov-Dec;37(7):1975-1993. doi: 10.1148/rg.2017170051. Epub 2017 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验